GoCV/openCV

An application of Go

* Lets look at the news

Open CV

* OpenCV
- Is a c++ (with some C) library for doing real time computer
vision.
- Runs on all major platforms

* Linux,

* Windows (with a lot of work),

* MacOS (except maybe apple silicon)
* Android

- Need gcc/g++
* Minggw for you windows users without WSL

OpenCV

* OpenCV is 20+ years old
- First released in 2000.

- S0 very mature, and provides lots of functionality

* So we can't possibly cover it all
* wrappers/interface in many programming languages.
- Python, java, Matlab, javascript

- And of course GO!!

GoCV

* GoCVis the go wrapper around goCV
- https://gocv.io/

- Its a bit of a bear to make, which is why I asked you to do it
over the week.

https://gocv.io/

Simple Tutorial

* Lets dig through the first tutorial

Import (
"gocv.io/x/gocv”

)

func main() {
webcam, _ := gocv.VideoCaptureDevice(0)
window := gocv.NewWindow("Hello")
img := gocv.NewMat()

for {
webcam.Read(&img)
window.IMShow(img)
window.WaitKey(1)

}

VideoCapture

* First
* gocv.VideoCaptureDevice
- Open the camera and get ready to stream

- Second return val is error if if fails to open the camera

The window

* Easiest way to see the results is to use the gocv window

* gocv.NewWindow(<name>)

* Two params,

- Firstis name, if there is already a window with this name, then it
won't open a second

- Second param is flags

- Only default flag is autoresize

* First window pops up small. Close it and window reopens correct size

Bit Flags

* How many of you have used bit flags before?

= ¢

Bit Flags

* How many of you have used bit flags before?
-7

- Based on our experiences this semester I'll guess about
20% of you

 Common in lower level CE/embedded programming where
efficiency is very important.

* lets take a quick diversion and come back to bit flags

What is the biggest cost?

* What is the biggest expense today in computer
programs?

- Lucky volunteer?

What is the biggest cost?

* What is the biggest expense today in computer
programs?

- Lucky volunteer?
* What was the biggest expense 40+ years ago?

- Maybe even 25-30 years ago

What is the biggest cost?

* What is the biggest expense today in computer
programs?

- Programmer time
* What was the biggest expense 40+ years ago?

- Maybe even 25-30 years ago
- Computing equipment
- What and why of the “y2k” issue

Developers vs Programs

* So today you can get a linode
https://www.linode.com/pricing/ for $5/month at the
low end

* While a go developer is often making $100k or more
in the US

- https://www.indeed.com/salaries/golang-developer-Salarie
S

https://www.linode.com/pricing/
https://www.indeed.com/salaries/golang-developer-Salaries
https://www.indeed.com/salaries/golang-developer-Salaries

So what do we optimize for?

* S0 given the expense of developers and inexpensive
tools

- For what should we optimize in our development?

- Lucky volunteer?

So what do we optimize for?

* S0 given the expense of developers and inexpensive
tools

- For what should we optimize in our development?
- Lucky volunteer?
- Yup - definitely developer time.

- And what do developers spend the most time on in any sort
of “real” software?

* Lucky volunteer again?

So what do we optimize for?

* S0 given the expense of developers and inexpensive tools

- For what should we optimize in our development?
- Lucky volunteer?
- Yup - definitely developer time.

- And what do developers spend the most time on in any sort of
“real” software?

* Lucky volunteer again?

- Reading the existing code to understand where and what changes
to make

Go philosophy

* The Go language is built for enterprise development

- Google heritage of course
- Small set of keywords

- Slow pace of changes and major features

* Good go code from 5 years ago still very readable today.
* Java from 5 years ago?
* Even python?

- S0 go long emphasis on readability

* Gofmt helps

Optimize for what?

* So when do we not want to optimize for developer
time (readability)?

- Lucky volunteer

Optimize for what?

* So when do we not want to optimize for developer time
(readability)?

- Those rare cases where performance is critical and worth the
extra development time

* Real time systems (rockets, autonomous robots, self-driving cars)
* Anything else which continuous performance needs

- Deep internals of an operating system

- graphics/game loop

- Highly optimized libraries used by developers whose internals most
people will not see.

And now back....

* And now back to our reqgularly scheduled topic

- So opencv and the Qt window library fall into some of
those highly optimized back end libraries

- QT runs the Tesla in-car GUI and other places with limited
compute.

- So they use optimizations that might be overkill elsewhere

Bitflags

* In much of our computing

- Boolean flags

- In c++ and go booleans are 1 byte
* In python and java even more

- Not too much for 8 gigs of RAM

- But if you need 16 flags and open hundreds of windows - can be a
lot

* What is a window discussion

Bitflags II

* So solution use a byte or int16 to store a bunch of values each is a
power of two

* Example from open cv cpp headers

- enum cv::MouseEventFlags {

- cVi:EVENT_FLAG_LBUTTON =1,

— cVvi:EVENT_FLAG_RBUTTON = 2,

- cVi:EVENT_FLAG_MBUTTON = 4,
— cVi:EVENT_FLAG_CTRLKEY = 8,

— cVi:EVENT_FLAG_SHIFTKEY = 16,
— cViEVENT_FLAG_ALTKEY = 32

Bitflags III

* Use bitwise or to use two flags together
- flags:= EVENT_FLAG_RBUTTON | EVENT_FLAG_CTRLKEY

* Then use bitwise and to check to see if a flag is set

- if flags & EVENT_FLAG_RBUTTON {

* This code only reached of the EVENT_FLAG_RBUTTON value was
set in the flag

- flags : 00001010
- EVENT_FLAG_RBUTTON 00000010

Remember that program

* Lets dig through the first tutorial

Import (
"gocv.io/x/gocv”

)

func main() {
webcam, _ := gocv.VideoCaptureDevice(0)
window := gocv.NewWindow("Hello")
img := gocv.NewMat()

for {
webcam.Read(&img)
window.IMShow(img)
window.WaitKey(1)

}

Mat

* img := gocv.NewMat()

* Creates a new material ‘Mat’
- With zero value

* From docs: “Mat represents an n-dimensional dense
numerical single-channel or multi-channel array.
<and more>"

- So this is going to be our image

Get this frame

* Get the current frame

webcam.Read(&img)

- Pass pointer to a material which gets filled

— Return value is boolean - false if can't read

Show the image

* Now we show the image on the window
window.IMShow(img)
* Needs WaitKey next or will not show

* WaitKey takes param: minimum number of
milliseconds to wait

* WaitKey also polls events - so event processing
happens here

Face Finder

* New lets try a face finder demo

* Before we can find faces need to get a classifier

- https://github.com/opencv/opencv/tree/master/data
- Basically a trained neural net in xml format

- haarcascade _frontalface_default.xml

* Large, but seems to work for wide variety of faces
* Grab it from github

https://github.com/opencv/opencv/tree/master/data

The new main

func 04

webcam, err := gocv.VideoCaptureDevice(0) //or 1
if err !=nil {

fmt.Printin(err)

return

}

defer webcam.Close()

displayWindow := gocv.NewWindow("Find a face")
classifier := gocv.NewCascadeClassifier()

success := classifier.Load("haarcascade_frontalface_default.xml")
if Isuccess {

log.Fatal("Failed to load classifier - can't continue")
}

defer classifier.Close()

FindFaces(webcam, displayWindow, classifier)

}

* Lets build it
* Note the false positives

* On the mac in my office I'm ‘superman’ it can't find
me with glasses - but without finds me fine

func (camera *gocv.VideoCapture, window *gocv.Window, faceFiindingNet gocv.CascadeClassifier) {

img := gocv.NewMat()

defer img.Close()

for {

if ok := camera.Read(&img); !ok {

fmt.Printf("cannot read from camera!")

continue

}

if img.Empty() {

continue

}

potentialFaces := faceFiindingNet.DetectMultiScale(img)
for _, rectangle := range potentialFaces {
gocv.Rectangle(&img, rectangle, colornames.Darkkhaki, 3)
}

window.IMShow(img)

if window.WaitKey(10) >=0 {

break

Now lets extend that

* Lets extend the face finder to do a privacy blur

- Lets try that now

Now lets extend that

* Lets extend the face finder to do a privacy blur

- Lets try that now
- faceRegion := img.Region(rectangle)

- gocv.GaussianBlur(faceRegion, &faceRegion, image.Pt(55,
95), 0, 0, gocv.BorderDefault)

- faceRegion.Close()

Now lets extend that

* Lets extend the face finder to do a privacy blur
- Lets try that now
* One more if we have time

- Lets write “redacted” over the blur

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

