GoCV/openCV

An application of Go



* Lets look at the news



Open CV

* OpenCV
- Is a c++ (with some C) library for doing real time computer
vision.
- Runs on all major platforms

* Linux,

* Windows (with a lot of work),

* MacOS (except maybe apple silicon)
* Android

- Need gcc/g++
* Minggw for you windows users without WSL



OpenCV

* OpenCV is 20+ years old
- First released in 2000.

- S0 very mature, and provides lots of functionality

* So we can't possibly cover it all
* wrappers/interface in many programming languages.
- Python, java, Matlab, javascript

- And of course GO!!



GoCV

* GoCVis the go wrapper around goCV
- https://gocv.io/

- Its a bit of a bear to make, which is why I asked you to do it
over the week.


https://gocv.io/

Simple Tutorial

* Lets dig through the first tutorial

Import (
"gocv.io/x/gocv”

)

func main() {
webcam, _ := gocv.VideoCaptureDevice(0)
window := gocv.NewWindow("Hello")
img := gocv.NewMat()

for {
webcam.Read(&img)
window.IMShow(img)
window.WaitKey(1)

}



VideoCapture

* First
* gocv.VideoCaptureDevice
- Open the camera and get ready to stream

- Second return val is error if if fails to open the camera



The window

* Easiest way to see the results is to use the gocv window

* gocv.NewWindow(<name>)

* Two params,

- Firstis name, if there is already a window with this name, then it
won't open a second

- Second param is flags

- Only default flag is autoresize

* First window pops up small. Close it and window reopens correct size



Bit Flags

* How many of you have used bit flags before?

= ¢



Bit Flags

* How many of you have used bit flags before?
-7

- Based on our experiences this semester I'll guess about
20% of you

 Common in lower level CE/embedded programming where
efficiency is very important.

* lets take a quick diversion and come back to bit flags



What is the biggest cost?

* What is the biggest expense today in computer
programs?

- Lucky volunteer?



What is the biggest cost?

* What is the biggest expense today in computer
programs?

- Lucky volunteer?
* What was the biggest expense 40+ years ago?

- Maybe even 25-30 years ago



What is the biggest cost?

* What is the biggest expense today in computer
programs?

- Programmer time
* What was the biggest expense 40+ years ago?

- Maybe even 25-30 years ago
- Computing equipment
- What and why of the “y2k” issue



Developers vs Programs

* So today you can get a linode
https://www.linode.com/pricing/ for $5/month at the
low end

* While a go developer is often making $100k or more
in the US

- https://www.indeed.com/salaries/golang-developer-Salarie
S


https://www.linode.com/pricing/
https://www.indeed.com/salaries/golang-developer-Salaries
https://www.indeed.com/salaries/golang-developer-Salaries

So what do we optimize for?

* S0 given the expense of developers and inexpensive
tools

- For what should we optimize in our development?

- Lucky volunteer?
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So what do we optimize for?

* S0 given the expense of developers and inexpensive tools

- For what should we optimize in our development?
- Lucky volunteer?
- Yup - definitely developer time.

- And what do developers spend the most time on in any sort of
“real” software?

* Lucky volunteer again?

- Reading the existing code to understand where and what changes
to make



Go philosophy

* The Go language is built for enterprise development

- Google heritage of course
- Small set of keywords

- Slow pace of changes and major features

* Good go code from 5 years ago still very readable today.
* Java from 5 years ago?
* Even python?

- S0 go long emphasis on readability

* Gofmt helps



Optimize for what?

* So when do we not want to optimize for developer
time (readability)?

- Lucky volunteer



Optimize for what?

* So when do we not want to optimize for developer time
(readability)?

- Those rare cases where performance is critical and worth the
extra development time

* Real time systems (rockets, autonomous robots, self-driving cars)
* Anything else which continuous performance needs

- Deep internals of an operating system

- graphics/game loop

- Highly optimized libraries used by developers whose internals most
people will not see.



And now back....

* And now back to our reqgularly scheduled topic

- So opencv and the Qt window library fall into some of
those highly optimized back end libraries

- QT runs the Tesla in-car GUI and other places with limited
compute.

- So they use optimizations that might be overkill elsewhere



Bitflags

* In much of our computing

- Boolean flags

- In c++ and go booleans are 1 byte
* In python and java even more

- Not too much for 8 gigs of RAM

- But if you need 16 flags and open hundreds of windows - can be a
lot

* What is a window discussion



Bitflags II

* So solution use a byte or int16 to store a bunch of values each is a
power of two

* Example from open cv cpp headers

- enum cv::MouseEventFlags {

- cVi:EVENT_FLAG_LBUTTON =1,

— cVvi:EVENT_FLAG_RBUTTON = 2,

- cVi:EVENT_FLAG_MBUTTON = 4,
—  cVi:EVENT_FLAG_CTRLKEY = 8,

—  cVi:EVENT_FLAG_SHIFTKEY = 16,
—  cViEVENT_FLAG_ALTKEY = 32



Bitflags III

* Use bitwise or to use two flags together
- flags:= EVENT_FLAG_RBUTTON | EVENT_FLAG_CTRLKEY

* Then use bitwise and to check to see if a flag is set

- if flags & EVENT_FLAG_RBUTTON {

* This code only reached of the EVENT_FLAG_RBUTTON value was
set in the flag

- flags : 00001010
- EVENT_FLAG_RBUTTON 00000010



Remember that program

* Lets dig through the first tutorial

Import (
"gocv.io/x/gocv”

)

func main() {
webcam, _ := gocv.VideoCaptureDevice(0)
window := gocv.NewWindow("Hello")
img := gocv.NewMat()

for {
webcam.Read(&img)
window.IMShow(img)
window.WaitKey(1)

}



Mat

* img := gocv.NewMat()

* Creates a new material ‘Mat’
- With zero value

* From docs: “Mat represents an n-dimensional dense
numerical single-channel or multi-channel array.
<and more>"

- So this is going to be our image



Get this frame

* Get the current frame

webcam.Read(&img)

- Pass pointer to a material which gets filled

— Return value is boolean - false if can't read



Show the image

* Now we show the image on the window
window.IMShow(img)
* Needs WaitKey next or will not show

* WaitKey takes param: minimum number of
milliseconds to wait

* WaitKey also polls events - so event processing
happens here



Face Finder

* New lets try a face finder demo

* Before we can find faces need to get a classifier

- https://github.com/opencv/opencv/tree/master/data
- Basically a trained neural net in xml format

- haarcascade _frontalface_default.xml

* Large, but seems to work for wide variety of faces
* Grab it from github


https://github.com/opencv/opencv/tree/master/data

The new main

func 04

webcam, err := gocv.VideoCaptureDevice(0) //or 1
if err !=nil {

fmt.Printin(err)

return

}

defer webcam.Close()

displayWindow := gocv.NewWindow("Find a face")
classifier := gocv.NewCascadeClassifier()

success := classifier.Load("haarcascade_frontalface_default.xml")
if Isuccess {

log.Fatal("Failed to load classifier - can't continue")
}

defer classifier.Close()

FindFaces(webcam, displayWindow, classifier)

}



* Lets build it
* Note the false positives

* On the mac in my office I'm ‘superman’ it can't find
me with glasses - but without finds me fine



func (camera *gocv.VideoCapture, window *gocv.Window, faceFiindingNet gocv.CascadeClassifier) {

img := gocv.NewMat()

defer img.Close()

for {

if ok := camera.Read(&img); !ok {

fmt.Printf("cannot read from camera!")

continue

}

if img.Empty() {

continue

}

potentialFaces := faceFiindingNet.DetectMultiScale(img)
for _, rectangle := range potentialFaces {
gocv.Rectangle(&img, rectangle, colornames.Darkkhaki, 3)
}

window.IMShow(img)

if window.WaitKey(10) >=0 {

break



Now lets extend that

* Lets extend the face finder to do a privacy blur

- Lets try that now



Now lets extend that

* Lets extend the face finder to do a privacy blur

- Lets try that now
- faceRegion := img.Region(rectangle)

- gocv.GaussianBlur(faceRegion, &faceRegion, image.Pt(55,
95), 0, 0, gocv.BorderDefault)

- faceRegion.Close()



Now lets extend that

* Lets extend the face finder to do a privacy blur
- Lets try that now
* One more if we have time

- Lets write “redacted” over the blur
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