
Testing and Go

The news
● Lets look and talk about it.

Another Survey
● How many of you have do automated testing?
● How many have used some sort of continuous

integration?

Test Driven Development

● Tests come first before you write code
– Purist version?

Test Driven Development

● Tests come first before you write code
– Purist version?
– Write test before you do anything.
– Want to write a webapp?

● Before you do anything – including installing the web app libraries
– Write a test.
– When it fails do something.

– So purist: write test, and only write real code when test fails.

Test Driven Development

● Purist approach.
●

Automated Tests

● So key is Automated tests
● So I keep hearing about these tests

– What kinds of tests do we care about?
– How do people categorize the different kinds of automated tests?
– So many lucky volunteers

Automated Tests

● So I keep hearing about these tests
– What kinds of tests do we care about?

● Unit tests
● Functional tests
● Acceptance tests
● What are each of these?

Automated Tests

● So I keep hearing about these tests
– What kinds of tests do we care about?

● Unit tests
– Item by item – function by function tests

● Functional tests
– Does the app do what it is supposed to do?

● Acceptance tests
– Does the app do what the client thinks it is supposed to do?

– Of course then we run into: what is an “item”?

Automated Tests

● So what are the tests supposed to do for us in Test Driven
Development or (more and more often) other methods of
using automated tests?
– Why has Testing (TDD?) become so accepted in the last 10-15

years?
– Well actually some people still call it TDD but ‘automated tests’

might be a better term
– What does Automated testing buy us?

Automated Tests

● So what are the tests supposed to do for us in Test Driven
Development or (more and more often) other methods of
using automated tests?
– Why has Testing (TDD?) become so accepted in the last 10-15

years?
– Well actually some people still call it TDD but ‘automated tests’

might be a better term
– Tests are run every time code is compiled/interpreted.
– Tests become an extension of the compilers ability to catch errors.
– Always better to let the compiler catch the error.
– Why?

– What does it buy us?

Tests for us

● I'm not a TDD person
– But the automated tests technique are still valuable
– Automated tests of some sort are more or less mandatory today.
– Turn your specs into tests

● Unit tests
● And functional tests
● Write them,
● Then write the code
● Then run the tests
● Every time you change anything and build

– Run all tests again

Unit Tests

● Testing Smallest Testable part of application
– Functions, methods, etc
– Sometimes the entire public interface to a class
– Extend compiler's error checking capability.

● Traditionally each unit test should be done in isolation
– Even if your class relies on a database, mock database and test

class
– Recently lots of conference talks pushing back against mocks, tests

on each unit will include its dependancies
● We'll see if this takes

Unit/Automated Tests

● Available in nearly every important language
– JUnit (grandaddy of all unit tests – written by Kent Beck and Erich

Gamma) – major updates with JUnit 5
– Cheat for C
– Googletest for c++
– PyUnit for python(older library based on JUnit)
– Pytest modern – can write tests without giant test classes
– Built-in for newer languages like go and rust
– etc

Testing Humor

Testing and bug bounties

● Why does every tech company that institutes an internal “bug
bounty” program end it very quickly?
– Lucky volunteer other than the people who took the capstone with

me?

Testing and bug bounties

● Why does every tech company that institutes an internal “bug
bounty” program end it very quickly?
– Lucky volunteer other than the people who took the capstone with

me?
–

Tests in Go
● Testing is built in to go

– Put your tests into a file with a name that ends in _test.go
– Eg

● For the databaseDemo.go I might have
● databaseDemo_test.go

– Import the testing package in each test file

Test Functions
● Test functions need to be exported symbols which

means they start with?
– Lucky volunteer?

Test Functions
● Test functions need to be exported symbols which

means they start with?
– A capital letter

● All tests functions start with Test
– Rest of function name should start with capital letter too
– Eg

● TestOpenDataBase(t *testing.T)

Errors and the “Unix Way”
● The old “Unix way” developed in the days of

command line terminals
– Everything works: no feedback
– Something went wrong: show error feedback
– Use t.Error(<error message>) to fail the test

Running tests
● Using command line tools:

– go test XXX_test.go
● Will run tests just in that file

– go test
● Will run all tests in the current directory.

Table Tests
● One of the neat go testing mechanisms is “table

testing”
● At the beginning of the testing function

– Create a struct with
● Test data and then final item is expected output

– Create a slice of literals for the struct
– For loop through the slice and apply the tests and check the

outcome for each.

Example
● func TestAbs(t *testing.T) {
● tests := []struct {
● input int
● expected int
● }{
● {1, 1},
● {0, 0},
● {-1, 1},
● {-maxInt, maxInt},
● {maxInt, maxInt},
● }
● for _, test := range tests {
● actual := Abs(test.input)
● if actual != test.expected {
● t.Errorf("Abs(%d) = %d; want %d", test.input, actual, test.expected)
● }
● }
● }

Example from:
https://lwn.net/Articles/821358/

Now lets try some
● Lets go write some tests.

Continuous Integration
● What do we mean by continuous integration?

Continuous Integration
● What do we mean by continuous integration?

– Every time we commit code to version control, the entire project
is built and tested.

– Compare to previous approaches
● Group might work on its piece of the project, maybe a library, and build

and test it in isolation except for occasional “gold master” style builds
– Now, since automated tests run for every commit/push/pull

request,
● you are either fairly confident that the new changes don’t break the

existing project
● Of find out about the breaks right away.

Experiences
● Has anyone worked with Continuous Integration

before?
– What sorts?
–

–

Experiences
● Has anyone worked with Continuous Integration before?

– What sorts?
● Jenkins
● TravisCI
● CircleCI
● Jetbrains TeamCity
● CodeShip
● Bamboo
● etc

Continuous Integration
● Today the top two cloud based git servers provide CI

services too
– Gitlab has had CI for years
– Github introduced github actions a few years ago

● And made them free in August 2019 for everyone.
● We use github for this class

– Since the jetbrains integration with github is really good.
– And the gitlab integration is only so-so

Lets try it out
● Lets pick a go repository and add github actions

Adding Actions
● First Click the Actions Tab
●

Go
● There is one prebuilt

for go projects
●

Go default
● # This workflow will build a golang project
● # For more information see:

https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-go
●

● name: Go
●

● on:
● push:
● branches: ["master"]
● pull_request:
● branches: ["master"]
●

● jobs:
●

● build:
● runs-on: ubuntu-latest
● steps:
● - uses: actions/checkout@v3
●

● - name: Set up Go
● uses: actions/setup-go@v4
● with:
● go-version: '1.20'
●

● - name: Build
● run: go build -v ./...
●

● - name: Test
● run: go test -v ./...
●

● This is small, lets look at it on github itself.
● Note gofmt is no longer run
● Assumes you have done so
● But tests are run which makes the

valuable.
● If tests fail – all collaborators get

screaming email

Now lets make a commit
● And see the results.

Lets call it here for now

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

