
Testing and Go



The news
● Lets look and talk about it.



Another Survey
● How many of you have do automated testing?
● How many have used some sort of continuous 

integration?



  

Test Driven Development

● Tests come first before you write code
– Purist version?



  

Test Driven Development

● Tests come first before you write code
– Purist version?
– Write test before you do anything.
– Want to write a webapp?

● Before you do anything – including installing the web app libraries
– Write a test.
– When it fails do something.

– So purist: write test, and only write real code when test fails.



  

Test Driven Development

● Purist approach.
●



  

Automated Tests

● So key is Automated tests
● So I keep hearing about these tests

– What kinds of tests do we care about?
– How do people categorize the different kinds of automated tests?
– So many lucky volunteers 



  

Automated Tests

● So I keep hearing about these tests
– What kinds of tests do we care about?

● Unit tests
● Functional tests
● Acceptance tests
● What are each of these?



  

Automated Tests

● So I keep hearing about these tests
– What kinds of tests do we care about?

● Unit tests
– Item by item – function by function tests

● Functional tests
– Does the app do what it is supposed to do?

● Acceptance tests
– Does the app do what the client thinks it is supposed to do?

– Of course then we run into: what is an “item”?



  

Automated Tests

● So what are the tests supposed to do for us in Test Driven 
Development or (more and more often) other methods of 
using automated tests?
– Why has Testing (TDD?) become so accepted in the last 10-15 

years?
– Well actually some people still call it TDD but ‘automated tests’ 

might be a better term
– What does Automated testing buy us?



  

Automated Tests

● So what are the tests supposed to do for us in Test Driven 
Development or (more and more often) other methods of 
using automated tests?
– Why has Testing (TDD?) become so accepted in the last 10-15 

years?
– Well actually some people still call it TDD but ‘automated tests’ 

might be a better term
– Tests are run every time code is compiled/interpreted.
– Tests become an extension of the compilers ability to catch errors.
– Always better to let the compiler catch the error.
– Why?

– What does it buy us?



  

Tests for us

● I'm not a TDD person
– But the automated tests technique are still valuable
– Automated tests of some sort are more or less mandatory today.
– Turn your specs into tests

● Unit tests
● And functional tests
● Write them,
● Then write the code
● Then run the tests
● Every time you change anything and build

– Run all tests again 



  

Unit Tests

● Testing Smallest Testable part of application
– Functions, methods, etc
– Sometimes the entire public interface to a class
– Extend compiler's error checking capability.

● Traditionally each unit test should be done in isolation
– Even if your class relies on a database, mock database and test 

class
– Recently lots of conference talks pushing back against mocks, tests 

on each unit will include its dependancies
● We'll see if this takes 



  

Unit/Automated Tests

● Available in nearly every important language
– JUnit (grandaddy of all unit tests – written by Kent Beck and Erich 

Gamma) – major updates with JUnit 5
– Cheat for C
– Googletest for c++
– PyUnit for python(older library based on JUnit)
– Pytest modern – can write tests without giant test classes
– Built-in for newer languages like go and rust 
– etc



  

Testing Humor



  

Testing and bug bounties

● Why does every tech company that institutes an internal “bug 
bounty” program end it very quickly?
– Lucky volunteer other than the people who took the capstone with 

me? 



  

Testing and bug bounties

● Why does every tech company that institutes an internal “bug 
bounty” program end it very quickly?
– Lucky volunteer other than the people who took the capstone with 

me?
–  



Tests in Go
● Testing is built in to go

– Put your tests into a file with a name that ends in _test.go
– Eg

● For the databaseDemo.go I might have
● databaseDemo_test.go

– Import the testing package in each test file



Test Functions
● Test functions need to be exported symbols which 

means they start with?
– Lucky volunteer?



Test Functions
● Test functions need to be exported symbols which 

means they start with?
– A capital letter

● All tests functions start with Test
– Rest of function name should start with capital letter too
– Eg

● TestOpenDataBase(t *testing.T)



Errors and the “Unix Way”
● The old “Unix way” developed in the days of 

command line terminals
– Everything works: no feedback
– Something went wrong: show error feedback
– Use t.Error(<error message>) to fail the test



Running tests
● Using command line tools:

– go test XXX_test.go 
● Will run tests just in that file

– go test
● Will run all tests in the current directory.



Table Tests
● One of the neat go testing mechanisms is “table 

testing”
● At the beginning of the testing function

– Create a struct with 
● Test data and then final item is expected output

– Create a slice of literals for the struct
– For loop through the slice and apply the tests and check the 

outcome for each.



Example
● func TestAbs(t *testing.T) {
●         tests := []struct {
●             input    int
●             expected int
●         }{
●             {1, 1},
●             {0, 0},
●             {-1, 1},
●             {-maxInt, maxInt},
●             {maxInt, maxInt},
●         }
●         for _, test := range tests {
●             actual := Abs(test.input)
●             if actual != test.expected {
●                 t.Errorf("Abs(%d) = %d; want %d", test.input, actual, test.expected)
●             }
●         }
●     }

Example from:
https://lwn.net/Articles/821358/



Now lets try some
● Lets go write some tests.



Continuous Integration
● What do we mean by continuous integration?



Continuous Integration
● What do we mean by continuous integration?

– Every time we commit code to version control, the entire project 
is built and tested.

– Compare to previous approaches
● Group might work on its piece of the project, maybe  a library, and build 

and test it in isolation except for occasional “gold master” style builds
– Now, since automated tests run for every commit/push/pull 

request, 
● you are either fairly confident that the new changes don’t break the 

existing project
● Of find out about the breaks right away.



Experiences 
● Has anyone worked with Continuous Integration 

before?
– What sorts?
–

–



Experiences 
● Has anyone worked with Continuous Integration before?

– What sorts?
● Jenkins
● TravisCI
● CircleCI
● Jetbrains TeamCity
● CodeShip
● Bamboo 
● etc



Continuous Integration
● Today the top two cloud based git servers provide CI 

services too
– Gitlab has had CI for years
– Github introduced github actions a few years ago

● And made them free in August 2019 for everyone. 
● We use github for this class 

– Since the jetbrains integration with github is really good.
– And the gitlab integration is only so-so



Lets try it out
● Lets pick a go repository and add github actions



Adding Actions
● First Click the Actions Tab
●



Go
● There is one prebuilt

for go projects
●



Go default
● # This workflow will build a golang project
● # For more information see: 

https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-go
●

● name: Go
●

● on:
●   push:
●     branches: [ "master" ]
●   pull_request:
●     branches: [ "master" ]
●

● jobs:
●

●   build:
●     runs-on: ubuntu-latest
●     steps:
●     - uses: actions/checkout@v3
●

●     - name: Set up Go
●       uses: actions/setup-go@v4
●       with:
●         go-version: '1.20'
●

●     - name: Build
●       run: go build -v ./...
●

●     - name: Test
●       run: go test -v ./...
●

● This is small, lets look at it on github itself.
● Note gofmt is no longer run
● Assumes you have done so
● But tests are run which makes the 

valuable.
● If tests fail – all collaborators get 

screaming email 



Now lets make a commit
● And see the results.



Lets call it here for now
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