
Application 
Development
Towards real programs in Go



Admin
● Questions
● Project
● Exam
● Feedback?
● Lets look at the news

– Lets get a few people to weight in on it.



Agile
● For those of you who haven’t done recent industry work, 

Agile is an overused term for a development methodology 
where 
– you work on a small feature set
– Ship often – work is done in ‘sprints’ usually 1-2 weeks long
– See how everything went
– Then repeat
– Lets examine some of the good/bad for this 



Retrospective
● The “retrospective” is the ‘See how everything went’ 

part
– Traditional questions/topics

● What went well?
● What didn’t go well?
● Questions?



Retrospective
● The “retrospective” is the ‘See how everything went’ part

– Because this is an academic setting I’m making a slight change
● What went well?
● What didn’t go well?
● What do you wish you (maybe you plural) knew before starting the 

sprint/project.
●



Retrospective
● So now lets take 10-15 minutes

– (I’ll duck in somewhere in the 11 minute mark to some 
groups to see if we are more or less done)

– And then we’ll have a representative report out to the 
whole group. 



Comments
● Lets review

– How do we create a one line comment in go?
● Lucky volunteer?



Comments
● Lets review

– How do we create a one line comment in go?
● Lucky volunteer?

– How about a multi line comment in go?
● Another lucky volunteer?

–



Comments
● Lets review

– How do we create a one line comment in go?
● Lucky volunteer?

– How about a multi line comment in go?
● Another lucky volunteer?

– What do I mean by inline comments in go?
● You know what is coming



Comments
● Lets review

– How do we create a one line comment in go?
● Lucky volunteer?

– How about a multi line comment in go?
● Another lucky volunteer?

– What do I mean by inline comments in go?
● defer os.Exit(0) //if we leave this function then  exit with success

– Which should you use when commenting your code after you are 
good at go and why?

● Distinguish learners from practitioners.
–



GoDoc
● GoDoc is a little like javadoc

– Allows comments in a particular format to be used for 
library documentation.

– All uses multiple line comments
● //this is the first
● //this is the second
● Code being commented.

–



Run godoc 
● Run godoc from command line 

– If needed 
– go get golang.org/x/tools/cmd/godoc
– It will start a web server serving web pages with 

documentation



Application Development
● These days most applications need 

– Data
– To show that data in a useful format
– Anything else?
– Of course there are also games, but maybe we’ll look at 

those in the future
–



GUI
● We are showing our data in a GUI

– Fyne lets us do that in a window on the desktop
– Or in a web browser

● So that is more or less covered.



Data
● Where can we get the data from?

– Thank-you my wonderful crew of volunteers



Data
● Where can we get the data from?

– Thank-you my wonderful crew of volunteers
– Hopefully your found all of them

● Maybe files
● Maybe the network (API calls like we’ve been doing)
● And maybe databases (we haven’t talked about that yet)



Data
● Where else do we find a lot of data other than APIs and 

databases?
–  



Data
● Where else do we find a lot of data other than APIs and 

databases?
– How about excel?
– Used everywhere in the world – and has lots of data
–



Excel with go
● There is a go library that works really well with excel files.
● (unknown unknowns to known unknowns)
●  Gone through different maintainers over the years, 
● Current:

–                  "github.com/xuri/excelize/v2"

● Grab the sample excel file from website



Simple Excel read
package main
import (

"fmt"
"github.com/xuri/excelize/v2"
"log"

)
func main() {

file, err := excelize.OpenFile("MedianIncome.xlsx")
if err != nil {

log.Fatal(err)
}
all_rows, err := file.GetRows("h08")
if err != nil {

fmt.Println("Error getting Rows", err)
}
for _, row := range all_rows {

//the titles all have one real cell, but the data we want all has many cells, so only do work
//when there is more than one cell in the row
if len(row) > 1 {

fmt.Println(row[0], " \t:\t ", row[1])
}

}



Going beyond reading
● Here are a few links to go beyond reading data

– Unknown unknowns  known unknowns→
● https://www.kelche.co/blog/go/excel/ 
● https://blog.logrocket.com/building-spreadsheets-go-exceli

ze/
● https://xuri.me/excelize/en/base/installation.html 
● Will you be able to cut and paste into your project?

– No – but if you understand it, you will be good.

https://www.kelche.co/blog/go/excel/
https://blog.logrocket.com/building-spreadsheets-go-excelize/
https://blog.logrocket.com/building-spreadsheets-go-excelize/
https://xuri.me/excelize/en/base/installation.html


Databases
● How many of you have worked with databases?

– In Dr. Jung’s class (or in some other undergrad class)
– In your jobs?
– Playing around?



Databases
● How many of you have worked with databases?
● Based on a lot of my other surveys my guess is going to 

be that about a quarter of you have seen this already and 
the rest are pretty new

● So for that quarter bear with me for a moment
● References for my images and further reading:

– https://medium.com/analytics-vidhya/programming-with-datab
ases-in-python-using-sqlite-4cecbef51ab9

●

https://medium.com/analytics-vidhya/programming-with-databases-in-python-using-sqlite-4cecbef51ab9
https://medium.com/analytics-vidhya/programming-with-databases-in-python-using-sqlite-4cecbef51ab9


Databases in 20 minutes
● So with that

– We really need to expose all students to some basic data handling in 
a required class. (you are only required one programming heavy class 
in the MS program.) 

– In this slideset I’m going to try to summarize a database course in a 
week or less.

● This is not a substitute for a real database class!!!!!
● That said, if you have questions ask them.

– Part of what I’m trying to do in this class is to give you a taste of some 
of the programming bits that every graduate student should have



Database History
● Historically Databases come in lots of difference types

–     Hierarchical databases
–     Network databases
–     Relational databases
–     Object-oriented databases
–     Graph databases
–     ER model databases
–     Document databases



Databases and SQL
● Realistically, today most people care about 2 of those

– Relational Databases (SQL)
– Document Databases (NoSQL)
– Note on Pronouncing these:

● Lots of disucussion:
– https://www.khanacademy.org/computing/computer-programming/sql/s

ql-basics/v/s-q-l-or-sequel
– https://database.guide/is-it-pronounced-s-q-l-or-sequel/

● sqlServer vs MySQL
● In general I find Americans more likely to use the old IBM “Sequel” 

pronunciation and the rest of the world to use S-Q-L
● I learned SQL from a recent immigrant so I often switch back and forth

https://www.khanacademy.org/computing/computer-programming/sql/sql-basics/v/s-q-l-or-sequel
https://www.khanacademy.org/computing/computer-programming/sql/sql-basics/v/s-q-l-or-sequel
https://database.guide/is-it-pronounced-s-q-l-or-sequel/


Relational Databases
● Relational Databases

– Developed in the early 1970s
– By 1980’s were all but the only type used
– (document databases making a big inroad in this 

dominance in last decade)



Relational Database in nutshell
● Database is made up of Tables

– Tables consist of rows and columns
such that:

● There is no significance to the order of the columns or rows.
● Each row contains one and only one value for each column.
● Each value for a given column has the same type.

– Caveat: blob field equivalent of void* in most DBMS
● Each table in the database should hold information about one specific thing, such 

as employees, products, or customers.
● Each row should hold a unique value

– At least one column value (or combo) for each row should be unique 



RDMS: Primary Key
● Every table has a ‘primary key’

– The value in every row (column or columns) that allows the row to 
be uniquely identified

– Eg:

● Usually numeric,
– But doesn’t have to be



RDMS: Foreign Key
● Foreign Keys

– Every table can have one or more foreign keys
– Column in table B has

the value of the primary
key from Table A

● Links the records/rows in
tables A and B



How do we represent the data
● Designing a database is a science and art of its own

– What should be rows, what should be columns
– Which things should be tables

● One-one, one-many, many-many relationships among data in tables
● Database managers have to make these decisions based on 

technological and business concerns
– And these can change over time like programming
– But harder to refactor the database.

– Making these decisions are beyond the scope of this course
– I’ll assume any significant database is built for you. 



SQL
● When we interact with a Relational Databas SQL is the 

only game in town.
– The full official standard is currently  ISO 9075 
– 14 documents from the ISO each 80+ pages and several cost 

a fair bit of money
● Giant, in places somewhat contradictory
● No one implements the whole thing
● With stored procedures is Turing complete.

– Turing complete?



Quick Digression for project
● How do we put text on the screen with our Game Library?



init in go
● The init function is special in go

– It is called whenever a package is loaded 
● Either the main package or another package
● Is called by the go system before any other function in the package

– Including the main function
● Is called only once per program (even if the package it is in is loaded 

multiple times)
– Used to setup resources that need to exist before any other code 

is called
● In this case our fonts need to be loaded in init. 



Font loading
func init() {

tt, err := opentype.Parse(fonts.MPlus1pRegular_ttf)
if err != nil {
log.Fatal(err)
}
const dpi = 72
mplusNormalFont, err = opentype.NewFace(tt, &opentype.FaceOptions{
Size:    24,
DPI:     dpi,
Hinting: font.HintingFull,
})
if err != nil {
log.Fatal(err)
}
mplusBigFont, err = opentype.NewFace(tt, &opentype.FaceOptions{
Size:    48,
DPI:     dpi,
Hinting: font.HintingFull,
})
if err != nil {
log.Fatal(err)
}

}                                                                                                   From the Ebiten font demo : https://ebiten.org/examples/font.html



sqlite
● There are many sql/RDMS databases out there

– For my examples we’ll use sqlite
● Very small lightweight RDMS database

– To use with go, most people suggest the go-sqlite3 driver 
by user mattn

– If not using go modules then 
– go get github.com/mattn/go-sqlite3



Getting SQLite3
● Any Debian based linux like Ubuntu/kubuntu/Mint etc

– sudo apt install sqlite3
– sudo apt install sqlitebrowser – graphical tool for looking 

at the data in the database
● And you are Done



● There are installers that you can download from the 
official site for the sqlite browser

● https://sqlitebrowser.org/

https://sqlitebrowser.org/


Simple db access
import(

"database/sql"
_ "github.com/mattn/go-sqlite3" //import for side effects
"log"

)

func main() {
myDatabase := OpenDataBase("./Demo.db")
defer myDatabase.Close()
create_tables(myDatabase)

}

func OpenDataBase(dbfile string) *sql.DB{
database, err := sql.Open("sqlite3", dbfile)
if err != nil {

log.Fatal(err)
}
return database

}

Note Unlike in some versions of the library, just opening the database won’t create it new.



● Create table statement used to create a new table in the db
● Official sqlite docs:

– CREATE TABLE [IF NOT EXISTS] [schema_name].table_name (
–  column_1 data_type PRIMARY KEY,
–    column_2 data_type NOT NULL,
–  column_3 data_type DEFAULT 0, 
–  table_constraint
– );

● Notice that SQL statements end in ‘;’ 



Lets add a table
func create_tables(database *sql.DB){

createStatement1 := "CREATE TABLE IF NOT EXISTS students(    " +
"banner_id INTEGER PRIMARY KEY," +
"first_name TEXT NOT NULL," +
"last_name TEXT NOT NULL," +
"gpa REAL DEFAULT 0," +
"credits INTEGER DEFAULT 0);"

database.Exec(createStatement1)
}

Lets add another table together. And since we have several SQL novices, lets examine what is going on here

CREATE TABLE IF NOT EXISTS course(
    course_prefix TEXT NOT NULL,
    course_number INTEGER NOT NULL,
    cap INTEGER DEFAULT 20,
    description TEXT,
    PRIMARY KEY(course_prefix, course_number)



Finally the big one
● Lets talk about what it all means 
● CREATE TABLE IF NOT EXISTS class_list(
registration_id INTEGER PRIMARY KEY,
course_prefix TEXT NOT NULL,
course_number INTEGER NOT NULL,
student_id INTEGER NOT NULL,
registration_date TEXT,
FOREIGN KEY (student_id) REFERENCES student (banner_id)
ON DELETE CASCADE ON UPDATE NO ACTION,
FOREIGN KEY (course_prefix, course_number) REFERENCES 
courses (course_prefix, course_number)
ON DELETE CASCADE ON UPDATE NO ACTION



Lets add some data
● statement := “INSERT INTO STUDENTS (banner_id, first_name, 
last_name, gpa, credits)
  VALUES (%d, %s, %s, %f, %d)”

● for firstName, lastName := range sampleNames{
● randGPA := rand.Float32() + float32(rand.Intn(3))
● randCredits := rand.Intn(120)
● filled_statement := fmt.Sprintf(statement, count,       
        firstName, lastName, randGPA, randCredits)

● fmt.Println(filled_statement)
● prepped_statement, err := database.Prepare(filled_statement)
● What could possibly go wrong?



Bigger picture
func add_sample_data(database *sql.DB){

sampleNames := map[string]string{"John":"Santore", "Enping":"Li", "Margaret":"Black",
"Seikyung":"Jung", "Haleh":"Khojasteh", "Abdul":"Sattar", "Paul":"Kim", "Yiheng":"Liang"}

statement := "INSERT INTO STUDENTS (banner_id, first_name, last_name, gpa, credits)" +
"  VALUES (%d, %s, %s, %f, %d)"

count := 1001
for firstName, lastName := range sampleNames{

randGPA := rand.Float32() + float32(rand.Intn(3))
randCredits := rand.Intn(120)
filled_statement := fmt.Sprintf(statement, count, firstName, lastName, randGPA, randCredits)
fmt.Println(filled_statement)
prepped_statement, err := database.Prepare(filled_statement)
if err != nil{

//cowardly bail out since this is academia
log.Fatal(err)

}
prepped_statement.Exec()

}
}

● This data is hard coded in the functions -but  where might we be getting our data from in ‘real life’



What could possibly go wrong
● Where does data come from in real life?

– Often users
– If we Sprintf data from the users in we could end up with 

what?



What could possibly go wrong
● Where does data come from in real life?

– Often users
– If we Sprintf data from the users in we could end up with 

what?
– “SQL injection attack”
–



Little bobby tables anyone



DB security
● App security

– These days it isn’t just for Dr. Li’s classes, need to be thinking 
about secure apps all the time.

– So when inserting into databases use the Values (?,?,…) notation
statement := "INSERT INTO STUDENTS (banner_id, first_name, last_name, gpa, credits)" +

"  VALUES (?, ?, ?, ?, ?)"

– Now we prepare the statement and execute it.
– Lets do that now



For posterity
● On slide in case you need it later

func add_sample_data(database *sql.DB){
sampleNames := map[string]string{"John":"Santore", "Enping":"Li", "Margaret":"Black",

"Seikyung":"Jung", "Haleh":"Khojasteh", "Abdul":"Sattar", "Paul":"Kim", "Yiheng":"Liang"}
statement := "INSERT INTO STUDENTS (banner_id, first_name, last_name, gpa, credits)" +

"  VALUES (?, ?, ?, ?, ?)"
count := 1001
for firstName, lastName := range sampleNames{

randGPA := rand.Float32() + float32(rand.Intn(4))
randCredits := rand.Intn(120)
prepped_statement, err := database.Prepare(statement)
if err != nil{

//cowardly bail out since this is academia
log.Fatal(err)

}
prepped_statement.Exec(count, firstName, lastName,randGPA,randCredits)
count +=1

}
}



Adding courses
● Now we need some courses.
● I’m going to grab my sample data map from an old demo:
● https://github.com/jsantore/GioDemo/blob/master/Display

Data.go
●  Our insert statement:

insert_statement := "INSERT INTO COURSES (course_prefix, course_number, description) VALUES (?,?,?);"

● What do we need next?

https://github.com/jsantore/GioDemo/blob/master/DisplayData.go
https://github.com/jsantore/GioDemo/blob/master/DisplayData.go


Adding courses
● Now we need some courses.
● I’m going to grab my sample data map from old demo:
● https://github.com/jsantore/GioDemo/blob/master/Display

Data.go
●  Our insert statement:

insert_statement := "INSERT INTO COURSE (course_prefix, course_number, description) VALUES (?,?,?);"

● What do we need next?
– Range through the data, 
– Break course into number and prefix

https://github.com/jsantore/GioDemo/blob/master/DisplayData.go
https://github.com/jsantore/GioDemo/blob/master/DisplayData.go


Prepare the data
● How are we going to break the course into a prefix 

and a course number?



Prepare the data
● How are we going to break the course into a prefix 

and a course number?
– Python style slicing is available
– So we can slice out “comp” and “510”
– But what do we need to do now?



Prepare the data
● How are we going to break the course into a prefix 

and a course number?
– Python style slicing is available
– So we can slice out “comp” and “510”
– But what do we need to do now?

● Now we need to convert “510” to 510 right? (lets look at the table 
description)

●



Lets add this sample data
● Work through it with the students

– Now we have data – look at it in the database viewer



Putting the R in RDMS
● So far none of our data is related to any other

– Lets put a little data in the last table and fix that
– Our statement
– INSERT INTO CLASS_LIST (banner_id, course_prefix, course_number,  

registration_date)
    VALUES(1001, 'Comp', 510, DATE('now'))

– Lets run this for several banner_id values
– Lets have everyone register for comp510 – because of course
– But setup replaceable values for the bannerID

● Tell me how



Now we have data
● Now we have data for all of the tables, but lets look at 

that last one



Dates
● Some RDMS have a datetime type for fields
● Not sqlite

– Dates can be stored as Strings
– Dates can be stored as floats/Reals (use julianday function)
– Dates can be stored as ints (unix time epoch)

● Two builtin functions you want to think about (for string 
version)
– DATE
– DATETIME
– Both take params, most common value is ‘now’



Oops I made a mistake
● Sometimes you make a mistake

– Or you operate in Europe under the GDPR
– GDPR???

● So many lucky volunteers



Oops I made a mistake
● Sometimes you make a mistake

– Or you operate in Europe under the GDPR
– And you need to delete data
– DELETE Statement

● Simple example: DELETE FROM table WHERE search_condition;



We need to make a change
● If you need to make a change to the data use update

– UPDATE data:
● UPDATE table
● SET column_1 = new_value_1,
●     column_2 = new_value_2
● WHERE
●     search_condition 
● ORDER column_or_expression
● LIMIT row_count OFFSET offset;



More data maintenance 
● Alter table

– Can add or delete or rename columns and more
– Fairly complex syntax, take comp580

● Drop table
– Remove table (and all its data) from the database (schema)

● Here I’m giving you a taste of what is available
– “Unknown unknowns” to “known unknowns”
– And energetic grad students will fill in those “known unknowns”



Using Data
● Using data in an RDMS
● Aka welcome to select

– Even in small sqlite the syntax is 
complex

– This is the official graph for the 
finite state machine for select 



Select at its most basic
● The simplest version of Select

– SELECT <columns> FROM <table>
– Or more interesting:

● SELECT <columns> FROM <table> WHERE <column name> = 
<value>

●



Lets try
● Lets find all the students on probation

– First ask the user what the probation cutoff is
● (eg 2.0 for undergrads and 3.0 for grads etc.)

– Guide me through this 



My solution
● For those who lose theirs and for later

func getMinGPA() float64{
reader := bufio.NewReader(os.Stdin)
fmt.Println("What is the minimum grade for good standing?")
value, err:= reader.ReadString("\n")
if err != nil{

log.Fatal("How did we fail reading standard in??",err)
}
min_gpa, err := strconv.ParseFloat(value, 32)
if err != nil{

log.Fatal("OK you seem to have typed in something that wasn't a float", err)
}
return min_gpa

}



Now query
● Now lets make the query and use the data
● func findProbationStudents(database *sql.DB) {

– var firstName, lastName string
– var gpa float64
– minGpa := getMinGPA()
– selectStatement := "SELECT first_name, last_name, gpa FROM STUDENTS WHERE gpa < ?"
– resultSet, err := database.Query(selectStatement, minGpa)
– if err != nil {

● log.Fatal("Bad Query", err)
– }
– defer resultSet.Close()
– for resultSet.Next() {
– err = resultSet.Scan(&firstName, &lastName, &gpa)
– if err != nil {

● log.Fatal(err)
– }
– fmt.Printf("%s %s is on probation with a GPA of %f\n", firstName, lastName, gpa)
– }}



Joins and select
● More interesting data is found by joining two tables

– Terminology
● Inner join
● Outer join
● See comp580

– But rule of thumb: only join tables that have foreign keys, 
otherwise you will have giant mess on your hands  



Try it
● If we have time lets try this
● SELECT first_name, last_name, credits 

    FROM STUDENTS 
    INNER JOIN CLASS_LIST ON 
    STUDENTS.banner_id = CLASS_LIST.banner_id 
    WHERE (STUDENTS.credits < 10 
        and CLASS_LIST.course_prefix = 'Comp'
        and CLASS_LIST.course_number = 510)

●

● Note: inner join on foreign key
● Where clause columns need not be in result set.



● Relational Databases are useful and important
– Take comp580 or comp405
– Learn more on your own
– This finishes our quick and useful look at relational 

databases
– Hopefully many “unknown unknowns  “known →

unknowns”
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