Application
Development

Towards real programs in Go

Admin

* Questions
* Project

* Exam

* Feedback?

* Lets look at the news

- Lets get a few people to weight in on it.

Aqile

* For those of you who haven't done recent industry work,
Agile is an overused term for a development methodology
where

- you work on a small feature set

- Ship often - work is done in ‘sprints’ usually 1-2 weeks long
- See how everything went

- Then repeat

- Lets examine some of the good/bad for this

Retrospective

* The “retrospective” is the ‘See how everything went’
part

- Traditional questions/topics

* What went well?
* What didn't go well?

* Questions?

Retrospective

* The “retrospective” is the ‘See how everything went' part

- Because this is an academic setting I'm making a slight change

* What went well?
* What didn’t go well?

* What do you wish you (maybe you plural) knew before starting the
sprint/project.

Retrospective

* So now lets take 10-15 minutes

- (I'll duck in somewhere in the 11 minute mark to some
groups to see if we are more or less done)

- And then we'll have a representative report out to the
whole group.

Comments

* |Lets review

- How do we create a one line comment in go?

* Lucky volunteer?

Comments

* |Lets review

- How do we create a one line comment in go?
* Lucky volunteer?
- How about a multi line comment in go?

* Another lucky volunteer?

Comments

* |Lets review

- How do we create a one line comment in go?
* Lucky volunteer?

- How about a multi line comment in go?
* Another lucky volunteer?

- What do I mean by inline comments in go?

* You know what is coming

Comments

* |Lets review

- How do we create a one line comment in go?
* Lucky volunteer?

- How about a multi line comment in go?
* Another lucky volunteer?

- What do I mean by inline comments in go?

* defer o0s.Exit(0) //if we leave this function then exit with success

- Which should you use when commenting your code after you are
good at go and why?

* Distinguish learners from practitioners.

GoDoc

* GoDoc is a little like javadoc

- Allows comments in a particular format to be used for
library documentation.

— All uses multiple line comments
 //this is the first

e //this is the second

* Code being commented.

Run godoc

* Run godoc from command line

- If needed
- go get golang.org/x/tools/cmd/godoc

- It will start a web server serving web pages with
documentation

Application Development

* These days most applications need
- Data

- To show that data in a useful format
- Anything else?

- Of course there are also games, but maybe we'll look at
those in the future

GUI

* We are showing our data in a GUI

- Fyne lets us do that in a window on the desktop

- Or in a web browser

* So that is more or less covered.

DEI:

* Where can we get the data from?

- Thank-you my wonderful crew of volunteers

DEI:

* Where can we get the data from?

- Thank-you my wonderful crew of volunteers

- Hopefully your found all of them
* Maybe files

* Maybe the network (API calls like we've been doing)

* And maybe databases (we haven't talked about that yet)

* Where else do we find a lot of data other than APIs and
databases?

* Where else do we find a lot of data other than APIs and
databases?

- How about excel?

- Used everywhere in the world - and has lots of data

Excel with go

* There is a go library that works really well with excel files.

* (unknown unknowns to known unknowns)
* Gone through different maintainers over the years,

* Current:

- "github.com/xuri/excelize/v2"

* Grab the sample excel file from website

Simple Excel read

package main

import (
"fmt"
"github.com/xuri/excelize/v2"
"log"

)

func main() {
file, err .= excelize.OpenFile("MedianIncome.xIsx")
if err 1= nil {
log.Fatal(err)

}
all_rows, err := file.GetRows("h08")
if err 1= nil {
fmt.Printin("Error getting Rows", err)
}

for _, row :=range all_rows {
//the titles all have one real cell, but the data we want all has many cells, so only do work
//when there is more than one cell in the row
if len(row) > 1 {
fmt.PrintIn(row[0], " \t:\t ", row[1])
}

Going beyond reading

Here are a few links to go beyond reading data

- Unknown unknowns — known unknowns

https://www.kelche.co/blog/go/excel/

https://blog.logrocket.com/building-spreadsheets-go-excels
ze/

https://xuri.me/excelize/en/base/installation.html

Will you be able to cut and paste into your project?

- No - but if you understand it, you will be good.

https://www.kelche.co/blog/go/excel/
https://blog.logrocket.com/building-spreadsheets-go-excelize/
https://blog.logrocket.com/building-spreadsheets-go-excelize/
https://xuri.me/excelize/en/base/installation.html

Databases

* How many of you have worked with databases?

- In Dr. Jung's class (or in some other undergrad class)
- In your jobs?

- Playing around?

Databases

* How many of you have worked with databases?

* Based on a lot of my other surveys my guess is going to
be that about a quarter of you have seen this already and
the rest are pretty new

* So for that quarter bear with me for a moment

* References for my images and further reading:

- https://medium.com/analytics-vidhya/programming-with-datab
ases-in-python-using-sqlite-4cecbef51ab9

https://medium.com/analytics-vidhya/programming-with-databases-in-python-using-sqlite-4cecbef51ab9
https://medium.com/analytics-vidhya/programming-with-databases-in-python-using-sqlite-4cecbef51ab9

Databases in 20 minutes

* So with that

- We really need to expose all students to some basic data handling in
a required class. (you are only required one programming heavy class
in the MS program.)

- In this slideset I'm going to try to summarize a database course in a
week or less.

* That said, if you have questions ask them.

- Part of what I'm trying to do in this class is to give you a taste of some
of the programming bits that every graduate student should have

Database History

* Historically Databases come in lots of difference types
- Hierarchical databases
- Network databases
- Relational databases
- Object-oriented databases
- Graph databases
- ER model databases

- Document databases

Databases and SQL

* Realistically, today most people care about 2 of those

- Relational Databases (SQL)
- Document Databases (NoSQL)

- Note on Pronouncing these:

* Lots of disucussion:

- https.//www.khanacademy.org/computing/computer-programming/sql/s
gl-basics/v/s-g-l-or-sequel

- https://database.quide/is-it-pronounced-s-g-l-or-sequel/
* sqlServer vs MySQL

* In general I find Americans more likely to use the old IBM “Sequel”
pronunciation and the rest of the world to use S-Q-L

* Ilearned SQL from a recent immigrant so I often switch back and forth

https://www.khanacademy.org/computing/computer-programming/sql/sql-basics/v/s-q-l-or-sequel
https://www.khanacademy.org/computing/computer-programming/sql/sql-basics/v/s-q-l-or-sequel
https://database.guide/is-it-pronounced-s-q-l-or-sequel/

Relational Databases

* Relational Databases
- Developed in the early 1970s
- By 1980's were all but the only type used

- (document databases making a big inroad in this
dominance in last decade)

Relational Database in nutshell

 Database is made up of Tables emp_1D_|emp_first_name |emp_ast_name | emp_phone
10057 Barbara Ku 1096

— Tables consist of rows and columns
such that:

* There is no significance to the order of the columns or rows.

106593 Jessica Anne 7821

Each row contains one and only one value for each column.

Each value for a given column has the same type.

- Caveat: blob field equivalent of void* in most DBMS

Each table in the database should hold information about one specific thing, such
as employees, products, or customers.

Each row should hold a unique value

- At least one column value (or combo) for each row should be unique

RDMS: Primary Key

* Every table has a ‘primary key’

- The value in every row (column or columns) that allows the row to
be uniquely identified

- EQ:
J CUSTOMERS TABLE

Customer No| First Name Last Name

1 Sally 'Thompson .
2 Sally ‘Henderson
3 ‘Harry ‘Henderson
: 1 Sand Wellingt
* Usually numeric, — =
Primary Key

- But doesn't have to be

RDMS: Foreign Key

* Foreign Keys

- Every table can have one or more foreign keys

- Column in table B has
the value of the primary
key from Table A

* Links the records/rows in
tables Aand B

Last Name

CUSTOMERS TABLE
Customer No| First Name
1 ‘Sally

2 ‘Sally

3 'Harry

4 Sandra

'Thompson .
‘Henderson
‘Henderson

Wellington i

® Primary Key

Primary Key mmp>

ORDERS ‘

EmployeeNo Supplier | Price
1 E n 'Harrison $235

2 |4 [1 Ford $234
13 1 68 Harrison $415
4 2 112 Ford $350
| E 42 ~ Ford $234
6 2 112 Ford $350

7 [2 2 Harrison $235

How do we represent the data

* Designing a database is a science and art of its own

- What should be rows, what should be columns
- Which things should be tables

* One-one, one-many, many-many relationships among data in tables

* Database managers have to make these decisions based on
technological and business concerns

- And these can change over time like programming
- But harder to refactor the database.

- Making these decisions are beyond the scope of this course

- I'll assume any significant database is built for you.

SQL

* When we interact with a Relational Databas SQL is the
only game in town.

- The full official standard is currently ISO 9075
- 14 documents from the ISO each 80+ pages and several cost
a fair bit of money

* Giant, in places somewhat contradictory
* No one implements the whole thing
* With stored procedures is Turing complete.

- Turing complete?

Quick Digression for project

* How do we put text on the screen with our Game Library?

Init in go

* The init function is special in go

- Itis called whenever a package is loaded

 Either the main package or another package
* Is called by the go system before any other function in the package

- Including the main function

* Is called only once per program (even if the package itis in is loaded
multiple times)

- Used to setup resources that need to exist before any other code
is called

* In this case our fonts need to be loaded in init.

Font loading

tt, err := opentype.Parse(fonts.MPlus1pRegular_ttf)

if err I= nil {
log.Fatal(err)
}

const dpi =72
mplusNormalFont, err = opentype.NewFace(tt, &opentype.FaceOptions{

Size: 24,

DPL: dpi,

Hinting: font.HintingFull,
)

if err = nil {
log.Fatal(err)

}

mplusBigFont, err = opentype.NewFace(tt, &opentype.FaceOptions{
Size: 48,

DPL: dpi,

Hinting: font.HintingFull,
})

if err I= nil {
log.Fatal(err)

}

1 From the Ebiten font demo ; https://ebiten.org/examples/font.html

sqlite

* There are many sql/RDMS databases out there

- For my examples we'll use sqlite
* Very small lightweight RDMS database

- To use with go, most people suggest the go-sqlite3 driver
by user mattn

- If not using go modules then

- go get github.com/mattn/go-sqlite3

Getting SQLite3

* Any Debian based linux like Ubuntu/kubuntu/Mint etc

- sudo apt install sqlite3

- sudo apt install sqglitebrowser - graphical tool for looking
at the data in the database

* And you are Done

* There are installers that you can download from the
official site for the sqlite browser

* https://sqglitebrowser.org/

https://sqlitebrowser.org/

Simple db access

import(
"database/sql"
_"github.com/mattn/go-sqlite3" //import for side effects
Illogll

)

func main() {
myDatabase := OpenDataBase("./Demo.db")
defer myDatabase.Close()
create_tables(myDatabase)

}

func OpenDataBase(dbfile string) *sql.DB{
database, err := sql.Open("sqlite3", dbfile)
if err !=nil {
log.Fatal(err)
}

return database

Note Unlike in some versions of the library, just opening the database won't create it new.

* Create table statement used to create a new table in the db

* Official sqlite docs:
— CREATE TABLE [IF NOT EXISTS] [schema_name].table_name (
- column_1 data_type PRIMARY KEY,
- column_2 data_type NOT NULL,
- column_3 data_type DEFAULT O,
- table _constraint
~)
* Notice that SQL statements end in

Lets add a table

func create_tables(database *sql.DBX
createStatement1 := "CREATE TABLE IF NOT EXISTS students(" +
"bpanner_id INTEGER PRIMARY KEY," +
"first._ name TEXT NOT NULL," +
"last_ name TEXT NOT NULL," +
"gpa REAL DEFAULT 0," +
"credits INTEGER DEFAULT 0);"
database.Exec(createStatement1)

Lets add another table together. And since we have several SQL novices, lets examine what is going on here

CREATE TABLE IF NOT EXISTS course(
course prefix TEXT NOT NULL,
course number INTEGER NOT NULL,
cap INTEGER DEFAULT 20,
description TEXT,
PRIMARY KEY(course prefix, course number)

Finally the big one

e Lets talk about what it all means

« CREATE TABLE IF NOT EXISTS class list(
registration i1d INTEGER PRIMARY KEY,
course prefix TEXT NOT NULL,
course number INTEGER NOT NULL,
student id INTEGER NOT NULL,
registration date TEXT,
FOREIGN KEY (student id) REFERENCES student (banner 1id)
ON DELETE CASCADE ON UPDATE NO ACTION,
FOREIGN KEY (course prefix, course number) REFERENCES
courses (course prefix, course number)
ON DELETE CASCADE ON UPDATE NO ACTION

Lets add some data

statement := “INSERT INTO STUDENTS (banner 1id, first name,
last name, gpa, credits)
VALUES (%d, %S, %s, %f, %d)”

« for firstName, lastName := range sampleNames{
. randGPA := rand.Float32() + float32(rand.Intn(3))
. randCredits := rand.Intn(120)
. filled statement := fmt.Sprintf(statement, count,
firstName, lastName, randGPA, randCredits)
. fmt.Println(filled statement)
. prepped statement, err := database.Prepare(filled statement)

What could possibly go wrong?

Bigger picture

func add_sample_data(database *sql.DBX
sampleNames := map([string]string{"John":"Santore", "Enping":"Li", "Margaret":"Black",
"Seikyung":"Jung", "Haleh":"Khojasteh", "Abdul":"Sattar", "Paul":"Kim", "Yiheng":"Liang"}
statement ;= "INSERT INTO STUDENTS (banner_id, first_name, last_name, gpa, credits)" +
" VALUES (%d, %s, %s, %f, %d)"
count := 1001
for firstName, lastName := range sampleNames{
randGPA := rand.Float32() + float32(rand.Intn(3))
randCredits := rand.Intn(120)
filled_statement := fmt.Sprintf(statement, count, firstName, lastName, randGPA, randCredits)
fmt.PrintIn(filled_statement)
prepped_statement, err := database.Prepare(filled_statement)
if err 1= nil{
//cowardly bail out since this is academia
log.Fatal(err)

}

prepped_statement.Exec()

* This data is hard coded in the functions -but where might we be getting our data from in ‘real life’

What could possibly go wrong

* Where does data come from in real life?

- Often users

- If we Sprintf data from the users in we could end up with
what?

What could possibly go wrong

* Where does data come from in real life?

- Often users

- If we Sprintf data from the users in we could end up with
what?

- “SQL injection attack”

Little bobby tables anyone

HI, THIS 15

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
(OMPUTER TROUBLE.

{%W

OH, DEAR - DID HE
BREAK SOMETHING?

IN FL ‘.JH‘r’-

ﬁm

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Studerts;-~ 7

~OH. YES UTTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WE'VE LOST THIS
YEAR'S GTUDENT RECORDS.
I HOPE YOURE HAPPY.
‘]l AND I HOPE
~~ YOUVE LEARNED
TO SANMZE YOUR
DATABASE INPTS,

DB security

* App security

- These days it isn't just for Dr. Li's classes, need to be thinking
about secure apps all the time.

- So when inserting into databases use the Values (?,7,...) notation

statement ;= "INSERT INTO STUDENTS (banner_id, first_name, last_name, gpa, credits)" +
" VALUES (?,?2,?2,2,)"

- Now we prepare the statement and execute it.

- Lets do that now

For posterity

°* Onslide In case you need It later

func add_sample_data(database *sql.DB)
sampleNames := map[string]string{"John":"Santore", "Enping":"Li", "Margaret":"Black",
"Seikyung":"Jung", "Haleh":"Khojasteh", "Abdul":"Sattar", "Paul":"Kim", "Yiheng":"Liang"}
statement ;= "INSERT INTO STUDENTS (banner_id, first_name, last_name, gpa, credits)" +
" VALUES (7,?2,2,2,?)"
count := 1001
for firstName, lastName := range sampleNames{
randGPA := rand.Float32() + float32(rand.Intn(4))
randCredits := rand.Intn(120)
prepped_statement, err ;= database.Prepare(statement)
if err I=nil{
//cowardly bail out since this is academia
log.Fatal(err)

}

prepped_statement.Exec(count, firstName, lastName,randGPA,randCredits)
count +=1

Adding courses

* Now we need some courses.
* I'm going to grab my sample data map from an old demo:

* https://github.com/jsantore/GioDemo/blob/master/Display
Data.go

* Qur insert statement:

insert_statement := "INSERT INTO COURSES (course_prefix, course_number, description) VALUES (?,?,?);"

* What do we need next?

https://github.com/jsantore/GioDemo/blob/master/DisplayData.go
https://github.com/jsantore/GioDemo/blob/master/DisplayData.go

Adding courses

* Now we need some courses.
* I'm going to grab my sample data map from old demo:

* https://github.com/jsantore/GioDemo/blob/master/Display
Data.go

* Qur insert statement:

insert_statement := "INSERT INTO COURSE (course_prefix, course_number, description) VALUES (?,?,?);"

* What do we need next?

- Range through the data,

- Break course into number and prefix

https://github.com/jsantore/GioDemo/blob/master/DisplayData.go
https://github.com/jsantore/GioDemo/blob/master/DisplayData.go

Prepare the data

* How are we going to break the course into a prefix
and a course number?

Prepare the data

* How are we going to break the course into a prefix
and a course number?

- Python style slicing is available
- So we can slice out “comp” and “510"

- But what do we need to do now?

Prepare the data

* How are we going to break the course into a prefix
and a course number?
- Python style slicing is available
- So we can slice out “comp” and “510"

- But what do we need to do now?

* Now we need to convert “510” to 510 right? (lets look at the table
description)

Lets add this sample data

* Work through it with the students

- Now we have data - look at it in the database viewer

Putting the R in RDMS

* So far none of our data is related to any other

Lets put a little data in the last table and fix that

— QOur statement

INSERT INTO CLASS LIST (banner id, course prefix, course number,

registration date)
VALUES (1001, 'Comp', 510, DATE('now'))

Lets run this for several banner id values

Lets have everyone register for comp510 — because of course
But setup replaceable values for the bannerID

* Tell me how

Now we have data

* Now we have data for all of the tables, but lets look at
that last one

* Some RDMS have a datetime type for fields

* Not sqlite
- Dates can be stored as Strings

- Dates can be stored as floats/Reals (use julianday function)

- Dates can be stored as ints (unix time epoch)

* Two builtin functions you want to think about (for string
version)

- DATE
- DATETIME

- Both take params, most common value is ‘'now’

Oops I made a mistake

* Sometimes you make a mistake

- Or you operate in Europe under the GDPR
- GDPR???

* So many lucky volunteers

Oops I made a mistake

* Sometimes you make a mistake

- Or you operate in Europe under the GDPR
- And you need to delete data

— DELETE Statement
* Simple example: DELETE FROM table WHERE search_condition;

We need to make a change

* If you need to make a change to the data use update

- UPDATE data:
« UPDATE table

 SET column_1 = new value_1,

column_2 = new_value 2
* WHERE

search_condition
* ORDER column_or_expression
 LIMIT row_count OFFSET offset;

More data maintenance

e Alter table

— Can add or delete or rename columns and more

- Fairly complex syntax, take comp580

* Drop table

- Remove table (and all its data) from the database (schema)
* Here I'm giving you a taste of what is available

- “"Unknown unknowns"” to “known unknowns”

- And energetic grad students will fill in those “known unknowns”

Using Data

* Using data in an RDMS

e Aka welcome to select

- Even in small sqlite the syntax is
complex

- This is the official graph for the
finite state machine for select

ommo n-h ble-ex pression U—J]

SELECT result-column
DISTINCT

table-or-subquery

i use
- -
) WHERE expr

GROUP [expr HAVING)-»{exp
k.i :

= S e
w

Q
ez =0

NS
ompo

und-operator |«

=~(onm)~(av)»ti uerm:.m_ﬂ

Select at its most basic

* The simplest version of Select
— SELECT <columns> FROM <table>

— Or more interesting:

 SELECT <columns> FROM <table> WHERE <column name> =
<value>

Lets try

* Lets find all the students on probation

- First ask the user what the probation cutoff is
° (eg 2.0 for undergrads and 3.0 for grads etc.)
- Guide me through this

My solution

* For those who lose theirs and for later

func getMinGPA() float64{
reader := bufio.NewReader(os.Stdin)
fmt.PrintIn("What is the minimum grade for good standing?")
value, err:= reader.ReadString("\n")
if err 1= nil{
log.Fatal("How did we fail reading standard in??",err)

}
min_gpa, err := strconv.ParseFloat(value, 32)
if err 1= nil{
log.Fatal("OK you seem to have typed in something that wasn't a float", err)
}

return min_gpa

Now query

* Now lets make the query and use the data

* func findProbationStudents(database *sql.DB) {

- var firstName, lastName string
- var gpa floate4
- minGpa := getMinGPA()
- selectStatement := "SELECT first_name, last_name, gpa FROM STUDENTS WHERE gpa <?"
- resultSet, err := database.Query(selectStatement, minGpa)
- iferr!=nil {
* log.Fatal("Bad Query", err)
-}
- defer resultSet.Close()
- for resultSet.Next() {
- err = resultSet.Scan(&firstName, &lastName, &gpa)
- iferr!=nil {
* log.Fatal(err)
-}
- fmt.Printf("%s %s is on probation with a GPA of %f\n", firstName, lastName, gpa)

- B

Joins and select

* More interesting data is found by joining two tables

- Terminology
* Inner join
* QOuter join
* See comp580

- But rule of thumb: only join tables that have foreign keys,
otherwise you will have giant mess on your hands

Try it

* If we have time lets try this

« SELECT first name, last name, credits
FROM STUDENTS
INNER JOIN CLASS LIST ON
STUDENTS.banner id = CLASS LIST.banner id
WHERE (STUDENTS.credits < 10
and CLASS LIST.course prefix
and CLASS LIST.course number

‘Comp’
510)

e Note: inner join on foreign key

* Where clause columns need not be 1n result set.

* Relational Databases are useful and important

- Take comp580 or comp405
- Learn more on your own

- This finishes our quick and useful look at relational
databases

- Hopefully many “unknown unknowns — “known
unknowns”

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

