Go and GUIs

Showing your stuff to users




Admin

* We'll do a midterm that I'll give you in a couple/few of
weeks.

* Now lets talk about cup-0-go podcase Episode thatI
asked you all to listen to for today.

* Next week Monday schedule on Feb 21



* What kind of GUI programming have you done.

- Quick survey



* My guess before talking with you all

- Java: JavaFX, maybe android and swing,
- Kotlin: android?

- Swift: iOS native?

- Python: pyQT or similar?

- javascript: react, angular etc

- Anything else?



How does it all work?

* Arranging components on the window?
- 1980ish-2010ish?
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How does it all work?

* Arraigning components on the window?
- 1980ish-2010ish?

* Put controls on window, use some sort of layout to arrange them.
Use static properties to paint them the right way.

- 2010ish-now

* Use some sort of layout to arrange them, use CSS to make them
look nice.
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Threads and event handling

* How do most GUI libraries handle threads and events?

- Main thread spawns new thread which will run the GUI, your
main thread becomes vestigial
* java's main ‘method’ or

* pythons first method called in the 1f __name__ == ‘_ main__ '
block

- How do events get handled?

* The GUI library has an event loop, you provide callback functions in
your code.

* Event loop? Callbacks? (let the students answer)



New Approaches to GUIs

* In the last few years we've seen a bunch of new approaches to GUIs taking hold

- Lots of CSS and javascript, but more.

- Awesome go:

* fyne - Cross platform native GUIs designed for Go based on Material Design. Supports: Linux, macQOS, Windows,
BSD, iOS and Android.

go-astilectron - Build cross platform GUI apps with GO and HTML/JS/CSS (powered by Electron).
go-gtk - Go bindings for GTK.

go-sciter - Go bindings for Sciter: the Embeddable HTML/CSS/script engine for modern desktop UI
development. Cross platform.

gotk3 - Go bindings for GTK3.

gowd - Rapid and simple desktop UI development with GO, HTML, CSS and NW.js. Cross platform.

gt - Qt binding for Go (support for Windows / macOS / Linux / Android / iOS / Sailfish OS / Raspberry Pi).

ui - Platform-native GUI library for Go. Cross platform.

Wails - Mac, Windows, Linux desktop apps with HTML UI using built-in OS HTML renderer.

walk - Windows application library kit for Go.

webview - Cross-platform webview window with simple two-way JavaScript bindings (Windows / macQOS / Linux).



Go GUI libraries

* Lets take a look

- Some old standbys
* Go bindings for GTK
* Go bindings for QT
- Some 2010s javascript CSS stuff

* Lots of electron based stuff (someone tell us about electron)

- go-astilectron
- Wails
— go-sciter



New language new approaches

* But go is new - and lots of traction for wholly new
approaches to GUIs

- Two GUI libraries for go that have the most buzz in the last 6
months:
* Fyne (Materials based design)
* @Gio (creator is Skandinavian so pronounce gi-oh)

- Immediate mode qui



Retained Mode GUI

* In Retained mode GUI (most common for the last 30-
40 years)
- Graphics library ‘retains’ (holds onto and controls) the
visuals
* Often holds a copy of the data you are using

- Client calls (that is your code) just say to graphics library
“make these changes and update please”



Immediate Mode GUI

* The graphics library gives you the client the primitives

- And client (you) tell it what and when to render to the
screen

- Big change: if you are determining when to render what
else do you have to be in charge of?



Immediate Mode GUI

* The graphics library gives you the client the primitives

- And client (you) tell it what and when to render to the screen
- Big change: if you are determining when to render what else do
you have to be in charge of?

* Event loop - window resize needs to re-render, so you need to catch and
handle those events.

- Often done in go by having functions that return other functions
as return values

* Was challenging fun to learn with grad students - think we'll do retained
mode here.



What is really going on

* Computerisjust 1s and Os so what is really going on
deep inside the computer for these GUIs?

* How do we see interface components on the screen?



What is really going on

* Computerisjust 1s and Os so what is really going on
deep inside the computer for these GUIs?

* How do we see interface components on the screen?
- We



Go UI Libraries

* See https://github.com/avelino/awesome-go#gui

* Wrappers around C++ libraries
- go-gtk, gotk3, therecipe/qt, nuklear and nucular
* GO + html + ¢ss
- Wails, go-astilectron, webview, gowd, go-sciter
* Pure go
- Fyne, gio (immediate mode)
* And one last:

- Ebitenui (a UI library aimed at both general Ul and game UIs)


https://github.com/avelino/awesome-go#gui

Fyne

* I'll use Fyne in this class for GUI

- 'materials design' GUI
* Originally a google standard

* Designed to have the same application look the same across platforms.
- For last year, can now compile to webassembly

* And deploy applications to web.
- Otherwise classic GUI development feel



Hello Fyne

* Here is the official hello world app

package main

import (
"fyne.io/fyne/v2/app"
"fyne.io/fyne/v2/widget"

)

func main() {
a = app.New()
w = a.NewWindow("Hello World")

w.SetContent(widget.NewLabel("Hello World!"))
w.ShowAndRun()

* Other than the terrible variable names - does it make sense?



Now let's extend our program

* Now lets extend our University program from last time.

- So we ask the user for the University keyword in a window

- And then display the data in a list.



Get Universities

import (
"encoding/json"
"fmt"
"io/ioutil"
"net/http"
Ilosll

) Get Data is now a function that
func GetUniversityData(searchTerm string) *[JUniversityResponse { ta keS the Search term and

apiURL := fmt.Sprintf("http://universities.hipolabs.com/search?name=9%s", searchTerm) ]

response, err := http.Get(apiURL) returns a slice

if err I=nil {

fmt.Printin("Error getting internet response.....\nCowardly quitting.....\n")

;’S-Ex't"” UniversityResponse is

defer response.Body.Close() unchanged
bodyData, err := ioutil.ReadAll(response.Body)

if err I=nil {

fmt.Printin("Error reading response body")

return nil

}

universities := make([JUniversityResponse, 2)

if err = json.Unmarshal(bodyData, &universities); err != nil {
fmt.PrintIn("Error - could not translate json data to struct properly")

}

return &universities



Window Struct and List helpers

type DisplayWindow struct {
UniversitiesData *[]JUniversityResponse
DataDisplay  *widget.List
UniversityInput *widget.Entry

}

func getUniversityData() { o . .
searchTerm := window.UniversityInput.Text This is the window struct we will use.

window.UniversitiesData = GetUniversityData(searchTerm)

The functions below is called by the
button when it is pressed.



List creation helpers

func GetDatalLen() int { These three functions are needed
if window.UniversitiesData == nil { by the fyne List factory function
return O
} .
return len(*window.UniversitiesData) The first one needs to tell how many
} items are in the list
func CreateListltem() fyne.CanvasObject {
return widget.NewLabel("Universities will appear here") The second one needs to tell what
} an empty list item will be
func UpdateListitem(itemNum widget.ListItemID,
listitem fyne.CanvasObject) { The third one need to tell how the

UnivName := (*window.UniversitiesData)[itemNum].Name .
listitem.(*widget.Label).SetText(UnivName) empty item should be updated to

) show data

If the list should do something
when selected, try making buttons
instead of labels



Finally Main.go

import (
"fyne.io/fyne/v2"
"fyne.io/fyne/v2/app"
"fyne.io/fyne/v2/container"
"fyne.io/fyne/v2/widget"

)

var window DisplayWindow

func main() {
displayApp := app.New()
mainWindow := displayApp.NewWindow("University Data in a List")
window = DisplayWindow{}
window.UniversityInput = widget.NewEntry()
window.UniversityInput.SetPlaceHolder("Enter University Name to search for...")
getDataButton := widget.NewButton("Get University Data", getUniversityData)
window.DataDisplay = widget.NewList(GetDatalLen, CreateListitem, UpdateListItem)
topPane := container.NewVBox(window.Universitylnput, getDataButton)
contentPane := container.NewVSplit(topPane, window.DataDisplay)
mainWindow.SetContent(contentPane)
mainWindow.Resize(fyne.NewsSize(400, 900))
mainWindow.ShowAndRun()



Let's try it.




Project 2.1 coming tonight
Summarize here
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