
 

Go part 3, we’re goin’ there now



  

Admin
● Any questions?

– Concerns?
– read through chapter 7, in the go book
– For next time listen to the cup-o-go Episode 48
– https://cupogo.dev/
– https://cupogo.dev/episodes/a-bunch-of-grape-things-a

re-happening
– We can talk about it next time

● In the mean time lets talk about the stuff in the news

https://cupogo.dev/
https://cupogo.dev/episodes/a-bunch-of-grape-things-are-happening
https://cupogo.dev/episodes/a-bunch-of-grape-things-are-happening


  

Go Projects and Dependencies 
● The original way that go did dependencies

– go get <project git location>
– Then the project would be downloaded, compiled and 

ready for inclusion in any of your go projects as a library.
– Eg 

● go get -d -u gobot.io/x/gobot/…

● What could possibly go wrong?



  

Go Projects and Dependencies
● What could possibly go wrong?

– Student list?



  

Go Projects and Dependencies
● What could possibly go wrong?

– Student list?
– My list: at least:

● Since often pulling latest version of project, someone can slip 
malicious code into a project

● Shared dependencies mean you can’t easily pin a project to a 
version of a dependency

– This one uses v1 of the web framework that one uses v2
● Shared dependencies makes it hard to tell exactly what 

dependencies there are for multiple large projects.



  

Current Approach: Go Modules
● Introduced incrementally in go 1.11 and 1.12, and 

made default in 1.13 
● Go modules uses a go.mod file to determine just 

the dependencies for this project
– Can pin a version.

● Goland will help keep these dependencies in sync.
● Old way not really easy any more



  

The Plan
● We want to get to interfaces,

– But can’t really do that without understanding how 
Go does objects and methods

– So a few slides on objects and methods



  

Methods
● In Object Oriented Programming

– Methods are functions attached to objects
– In python and java

● Part of the class definition
– In C++

● Sort of – in the header file



  

Methods
● In Object Oriented Programming

– Methods are functions attached to objects
– In python and java

● Part of the class definition
– In C++

● Sort of – in the header file

● In Go
– Methods are called on types (usually structs)
– But declared where ever (in same package)



  

A Struct to work with

● type Sprite struct {
●     Pic BitMap
●     Location Point
● }
● Let this be a simple 2D game struct
● Suppose it is in a game library and we are using it



  

Adding a method
● Methods can be added to a type anywhere

– Look a lot like functions except you call them on an ‘object’
● Method:

– func (<object called on>) <name>(<params>) <return type>{

● Example
– func (spr *Sprite)move(dX, dY int){
– //do stuff here
– }



  

Methods: non-mutating
● Methods that don’t mutate their objects

– const methods
– Usually called on the object itself (objects also passed by value)
– Eg: 
– func (spr Sprite) GetSize()(width int, height int){
– //fill in here
– }
– character Sprite := LoadCharacter()
– h, w := character.GetSize()



  

Methods Mutating
● If you want the method to mutate the object you call it on

– Call it on a pointer to the object
– Copy of pointer still points at same object.
– From before:

● func (spr *Sprite)move(dX, dY int){
● //do stuff here
● }

– Call:
● character Sprite := <get result here>
● (&character).move(30, 20)



  

Syntactic sugar
● But ‘programmers are lazy’

– And that was ugly
● Sure there are ways to do it in multiple lines to make it slightly better but

– But go helps out
– Iff you are calling the method on an object held in a variable, then go will take the address 

of the variable
– So 

● (&character).move(30, 20)
– Becomes just

● character.move(30,20) 

– And the pointer is passed 
– To
–  move automatically



  

Methods – finishing up
● You can call a method on nil

– Calling on nil will not cause an error
– Fixing the ‘million dollar mistake’?

● Still need to make sure your method doesn’t cause a 
panic if you do.
– Eg:

● Var badGuy Sprite //badGuy is nil
● h, w, := badGuy.getSize()
● Since nil is the zero value for sprites, h and w should be zero.



  

Any questions

● So methods in go
– Kinda objective-c like 
– Neat: you can add a method to any struct in the package in 

any file in the package
– Scary:

● you can add a method to any struct in the package in any file in the 
package, 

● you better look through the whole folder
– Keep your private data lower cased :-)



  

Interfaces
● Are contracts that types will provide some 

functionality
– So far java-esque
– Even the interface declaration looks right
– From go by example:

● type geometry interface {
●     area() float64
●     perim() float64
● }

–



  

Interfaces are implemented implicitly
● To implement an interface for a type T,

– Just write all the methods that are called on T that are required 
by the interface

– Continuing the example
● type Rect struct {
●     Width, Height float64
● }
● type circle struct {
●     radius float64
● }



  

Continuing the example (gobyexample.com)
● With these methods, both rect and circle implement the geometry interface

– func (r rect) area() float64 {
–     return r.width * r.height
– }
– func (r rect) perim() float64 {
–     return 2*r.width + 2*r.height
– }
– func (c circle) area() float64 {
–     return math.Pi * c.radius * c.radius
– }
– func (c circle) perim() float64 {
–     return 2 * math.Pi * c.radius
– }
–



  

Interfaces can be variables
● var shape geometry = rect{width: 5, height 4}
● a:= shape.area()
● Real power

– You make a function that takes an interface
● Can pass anything that satisfies that interface.



  

Interface {}
● interface{} is empty interface

– Matches any type that implements at least zero 
methods

– What does this buy us?



  

Interface {}
● interface{} is empty interface

– Matches any type that implements at least zero 
methods

– What does this buy us?
● It matches anything
● Make this a param type and your function can handle any 

value of any type



  

Interface values
● Interface is actually a two item struct right?

– Type (interface type)
– Value (usually a pointer to something that 

implements the interface)



  

Dynamic dispatch
● Lets talk dynamic dispatch

– Since we have some people with a non-cs 
background – what do I mean by “dynamic dispatch”

– How does it differ from static dispatch (sometimes 
called early binding)?



  

Dynamic dispatch
● Lets talk dynamic dispatch

– How does it work?
– C++, when does it happen? When does it not?
– How about Java?
– (since python is interpreted not an issue here)



  

Dynamic dispatch
● Lets talk dynamic dispatch

– How does it work?
– C++, when does it happen? When does it not?

● In Go – interface methods use dynamic dispatch. 



  

Sort.Interface
● How do you sort arbitrary collections

– In python?
– In java?
– In C++
– Anyone want to talk about something else?



  

Sort.Interface
● In Go:

– Implement sort of Interface //below is official go code from sort.go
● type SampleInterface interface {
●

● // Len is the number of elements in the collection.
● Len() int
●

● // Less reports whether the element with
● // index i should sort before the element with index j.
● Less(i, j int) bool
●

● // Swap swaps the elements with indexes i and j.
● Swap(i, j int)

● }



  

So how about that sort.Interface
● What do you think?



  

So how about that sort.Interface
● What do I think?

– I like python better for starter stuff
● Just defining one sort key function (the less function 

equivalent) is nicer to start
● Can see that this works for any data structure

– Nice, but not sure Go is ready for CS1, CS2 or Data Structures.



  

Type Assertions
● Type Assertions

– Used to check/cast interface type to
● Actual concrete type
● Another interface type

– Interface var x and Type T
– x.(T) will assert the type and return x as a T or panic

● What you just wanted to check?



  

Type Assertions
● Type Assertions

– Used to check/cast interface type to
● Actual concrete type
● Another interface type

– Interface var x and Type T
– x.(T) will assert the type and return x as a T or panic

● What you just wanted to check?
● realVal, ok := x.(realType)
●



  

Common look for type assertions
● If file, ok := w.(*os.File); ok{

– //Use file here
– }

● Recall that first statement does assignment, 
second statement (just checking Boolean value of 
‘ok’) is used for the if statement.



  

Comparing interfaces

● What about comparing interfaces
– Can be compared if

● Both are nil
● The underlying concrete type for both is same
● The concrete objects are comparable and == returns true



  

co-routines

● If you are ‘of a certain age” you’ve heard of 
coroutines.
– Functions that hold state between calls, used in 

non-preemptive multitasking



  

Goroutines
● So Go, being Punny (but not puny) has 
● Goroutines

– book: threads that work right
● Go official: go routines are “Green threads” managed by go 

runtime rather than OS
– Any function can be go routine
– Keyword go before function call



  

Goroutines live forever

● Well sorta,
– Will end when main.main ends
– Or you can ask them to end



  

Sequential vs Concurrent
● Image credit:

– https://medium.com/@k.wahome/concurrency-is-no
t-parallelism-a5451d1cde8d

https://medium.com/@k.wahome/concurrency-is-not-parallelism-a5451d1cde8d
https://medium.com/@k.wahome/concurrency-is-not-parallelism-a5451d1cde8d


  

Channels

● Used to communicate between go routines
● Have you done the producer/consumer lab yet in OS?

– Lets have one of the CS background folks give us the 
nutshell summary since we probably have a couple of 
students who haven’t seen it yet

● Channels
– communication between go routines
– One goroutine writes and the other reads.



  

Make a Channel

● Make a channel with make
– make(chan <type>)
– Makes a channel of type <type> with no buffering
– Sending data on unbuffered channel like this will 

block sender till receiver reads data
–



  

Deadlock

● What is deadlock?



  

Deadlock

● What is deadlock?
– All processes are blocked waiting for others

● Golang solves some deadlocks
– If all goroutines associated with a particular channel 

are blocked
● Go panics.



  

So how do you do it?
● data := make(chan int)
● In one go routine

– data <- 3 //writes 3 to the data channel and sleeps till 
other go routine reads

● In The other Go routine
– val := <- data //read a value from data channel and 

stuff it into val
–



  

Producer consumer in Go
● func producer(link chan<- string) { //specify the link channel as send only

– for _, m := range messages { //messages is a slice of strings, I committed it for space considerations.
– link <- m
– }
– close(link)

● }
●

● func consumer(link <-chan string, done chan<- bool) {//specify link as receive only
– for b := range link {
– fmt.Println(b)
– }
– done <- true

● }
●

● func main() {
– link := make(chan string)
– done := make(chan bool)
– go producer(link)
– go consumer(link, done)
– <-done //block till something gets sent to done

● }

You can find the original code without my comments 
(and additional examples) at
 
https://medium.com/better-programming/hands-on-g
o-concurrency-the-producer-consumer-pattern-c42aa
b4e3bd2

https://medium.com/better-programming/hands-on-go-concurrency-the-producer-consumer-pattern-c42aab4e3bd2
https://medium.com/better-programming/hands-on-go-concurrency-the-producer-consumer-pattern-c42aab4e3bd2
https://medium.com/better-programming/hands-on-go-concurrency-the-producer-consumer-pattern-c42aab4e3bd2


  

For next time

● Lets do the seminar approach in the 
– Lets talk about the podcast cup-o-go
– What stood out to you?



  

JSON
● What do you all know about JSON?

– Acknowledge pronunciation issues
– Student ‘volunteers’?



  

For those not familiar 



Data on the Internet
● Once upon a time

– Data on the web (http/https) was all web pages intended to be 
viewed by people.

● If we wanted to have a program read the data – need to ‘scrape’ 
the page.

● Back in 2000, Roy Fielding proposes REST framework (Ph.D thesis)
– REpresentational State Transfer
– Provide a way for web server to give data directly to program clients.
– In last 5-10 years really used a lot



json
● json: JavaScript Object Notation

– pronunciation note
– json notation used by many RESTful interfaces to provide data
– Says javascript but not really
– Java vs javascript?
– Java is to javascript as? 



json
● json: JavaScript Object Notation

– pronunciation note
– json notation used by many RESTful interfaces to provide data
– Says javascript but not really
– Java vs javascript?
– Java is to javascript as?

● Car is to Carpet
● Official json spec

– http://www.json.org/ 

http://www.json.org/


Sample json
● From https://openlibrary.org/dev/docs/api/lists
● {
●     "links": {
●         "self": "/people/george08/lists.json",
●         "next": "/people/george08/lists.json?limit=5&offset=5"
●     },
●     "size": 12,
●     "entries": [
●         {
●             "url": "/people/george08/lists/OL13L",
●             "full_url": 

"/people/george08/lists/OL13L/Various_Seeds_for_Testing"
,

●             "name": "Various Seeds for Testing",
●             "last_update": "2010-12-21T00:46:17.712513",
●             "seed_count": 13,
●             "edition_count": 13181
●         },
●         

● {
●             "url": "/people/george08/lists/OL97L",
●             "full_url": 

– "/people/george08/lists/OL97L/Time_Travel",
●             "name": "Time Travel",
●             "last_update": "2010-12-17T18:27:14.781336",
●             "seed_count": 5,
●             "edition_count": 838
●         },
●         ...
●     ]}

https://openlibrary.org/dev/docs/api/lists


From the web
● To get data from the web we use what protocol?



From the web
● To get data from the web we use what protocol?
● http(s) right?
● Go has you covered in the standard library

– net/http package
– See http.Get(URLLoc)

– Returns a response struct and an error
● https://golang.org/src/net/http/response.go
● Mostly we care about StatusCode 
● And Body

https://golang.org/src/net/http/response.go


  

Painless Json in go
● OK well ‘painless’ is optimistic, but far less painful 

than it was just 2 years ago.
● Use the encoding/json package.

– After we use ioutil.ReadAll on the response.Body we 
have an array of bytes with the json in it. 

– Use json.Unmarshal to get a slice of structs
● https://gobyexample.com/json
● https://golang.org/pkg/encoding/json/#Unmarshal
●

https://gobyexample.com/json
https://golang.org/pkg/encoding/json/#Unmarshal


  

Lets try it

● If there is time lets try it on this free University API
● http://universities.hipolabs.com/search?name=you

ng
● Example from a couple years ago

– https://github.com/jsantore/APIgo2022 
● Lets go through it and make sure you are 

comfortable with it

http://universities.hipolabs.com/search?name=young
http://universities.hipolabs.com/search?name=young
https://github.com/jsantore/APIgo2022


  

In class Exercise
● If there is time (and there should be)

– Lets ask the user on the command line for the 
search term rather than hard coding ‘young”

– Second, lets add a method to the UniversityData 
struct to print a University Data nicely and call it in 
line 29



Go:embed

● Amazing  new feature added a few years ago.
– You can embed files directly into the go program (the 

final executable) so all you have to give someone is a 
single executable file

– Text files, images etc
– Makes executable bigger, but no missing files possible



Go:embed    II

● Usage
● You need the go:embed directive in a comment immediately over a global 

variable, which will hold the embedded asset
● Eg:

//go:embed assets/*
var EmbeddedAssets embed.FS

● This will take everything in the assets subfolder of the project and treat it as 
a file system



Go:Embed III
● Example loading image from embedded file system – even easier for a text file

func loadPNGImageFromEmbedded(name string) *ebiten.Image {
pictNames, err := EmbeddedAssets.ReadDir("assets")
if err != nil {
log.Fatal("failed to read embedded dir ", pictNames, " ", err)
}
embeddedFile, err := EmbeddedAssets.Open("assets/" + name)
if err != nil {
log.Fatal("failed to load embedded image ", embeddedFile, err)
}
rawImage, err := png.Decode(embeddedFile)
if err != nil {
log.Fatal("failed to load embedded image ", name, err)
}
gameImage := ebiten.NewImageFromImage(rawImage)
return gameImage

}
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