

Go part 3, we’re goin’ there now

Admin
● Any questions?

– Concerns?
– read through chapter 7, in the go book
– For next time listen to the cup-o-go Episode 48
– https://cupogo.dev/
– https://cupogo.dev/episodes/a-bunch-of-grape-things-a

re-happening
– We can talk about it next time

● In the mean time lets talk about the stuff in the news

https://cupogo.dev/
https://cupogo.dev/episodes/a-bunch-of-grape-things-are-happening
https://cupogo.dev/episodes/a-bunch-of-grape-things-are-happening

Go Projects and Dependencies
● The original way that go did dependencies

– go get <project git location>
– Then the project would be downloaded, compiled and

ready for inclusion in any of your go projects as a library.
– Eg

● go get -d -u gobot.io/x/gobot/…

● What could possibly go wrong?

Go Projects and Dependencies
● What could possibly go wrong?

– Student list?

Go Projects and Dependencies
● What could possibly go wrong?

– Student list?
– My list: at least:

● Since often pulling latest version of project, someone can slip
malicious code into a project

● Shared dependencies mean you can’t easily pin a project to a
version of a dependency

– This one uses v1 of the web framework that one uses v2
● Shared dependencies makes it hard to tell exactly what

dependencies there are for multiple large projects.

Current Approach: Go Modules
● Introduced incrementally in go 1.11 and 1.12, and

made default in 1.13
● Go modules uses a go.mod file to determine just

the dependencies for this project
– Can pin a version.

● Goland will help keep these dependencies in sync.
● Old way not really easy any more

The Plan
● We want to get to interfaces,

– But can’t really do that without understanding how
Go does objects and methods

– So a few slides on objects and methods

Methods
● In Object Oriented Programming

– Methods are functions attached to objects
– In python and java

● Part of the class definition
– In C++

● Sort of – in the header file

Methods
● In Object Oriented Programming

– Methods are functions attached to objects
– In python and java

● Part of the class definition
– In C++

● Sort of – in the header file

● In Go
– Methods are called on types (usually structs)
– But declared where ever (in same package)

A Struct to work with

● type Sprite struct {
● Pic BitMap
● Location Point
● }
● Let this be a simple 2D game struct
● Suppose it is in a game library and we are using it

Adding a method
● Methods can be added to a type anywhere

– Look a lot like functions except you call them on an ‘object’
● Method:

– func (<object called on>) <name>(<params>) <return type>{

● Example
– func (spr *Sprite)move(dX, dY int){
– //do stuff here
– }

Methods: non-mutating
● Methods that don’t mutate their objects

– const methods
– Usually called on the object itself (objects also passed by value)
– Eg:
– func (spr Sprite) GetSize()(width int, height int){
– //fill in here
– }
– character Sprite := LoadCharacter()
– h, w := character.GetSize()

Methods Mutating
● If you want the method to mutate the object you call it on

– Call it on a pointer to the object
– Copy of pointer still points at same object.
– From before:

● func (spr *Sprite)move(dX, dY int){
● //do stuff here
● }

– Call:
● character Sprite := <get result here>
● (&character).move(30, 20)

Syntactic sugar
● But ‘programmers are lazy’

– And that was ugly
● Sure there are ways to do it in multiple lines to make it slightly better but

– But go helps out
– Iff you are calling the method on an object held in a variable, then go will take the address

of the variable
– So

● (&character).move(30, 20)
– Becomes just

● character.move(30,20)

– And the pointer is passed
– To
– move automatically

Methods – finishing up
● You can call a method on nil

– Calling on nil will not cause an error
– Fixing the ‘million dollar mistake’?

● Still need to make sure your method doesn’t cause a
panic if you do.
– Eg:

● Var badGuy Sprite //badGuy is nil
● h, w, := badGuy.getSize()
● Since nil is the zero value for sprites, h and w should be zero.

Any questions

● So methods in go
– Kinda objective-c like
– Neat: you can add a method to any struct in the package in

any file in the package
– Scary:

● you can add a method to any struct in the package in any file in the
package,

● you better look through the whole folder
– Keep your private data lower cased :-)

Interfaces
● Are contracts that types will provide some

functionality
– So far java-esque
– Even the interface declaration looks right
– From go by example:

● type geometry interface {
● area() float64
● perim() float64
● }

–

Interfaces are implemented implicitly
● To implement an interface for a type T,

– Just write all the methods that are called on T that are required
by the interface

– Continuing the example
● type Rect struct {
● Width, Height float64
● }
● type circle struct {
● radius float64
● }

Continuing the example (gobyexample.com)
● With these methods, both rect and circle implement the geometry interface

– func (r rect) area() float64 {
– return r.width * r.height
– }
– func (r rect) perim() float64 {
– return 2*r.width + 2*r.height
– }
– func (c circle) area() float64 {
– return math.Pi * c.radius * c.radius
– }
– func (c circle) perim() float64 {
– return 2 * math.Pi * c.radius
– }
–

Interfaces can be variables
● var shape geometry = rect{width: 5, height 4}
● a:= shape.area()
● Real power

– You make a function that takes an interface
● Can pass anything that satisfies that interface.

Interface {}
● interface{} is empty interface

– Matches any type that implements at least zero
methods

– What does this buy us?

Interface {}
● interface{} is empty interface

– Matches any type that implements at least zero
methods

– What does this buy us?
● It matches anything
● Make this a param type and your function can handle any

value of any type

Interface values
● Interface is actually a two item struct right?

– Type (interface type)
– Value (usually a pointer to something that

implements the interface)

Dynamic dispatch
● Lets talk dynamic dispatch

– Since we have some people with a non-cs
background – what do I mean by “dynamic dispatch”

– How does it differ from static dispatch (sometimes
called early binding)?

Dynamic dispatch
● Lets talk dynamic dispatch

– How does it work?
– C++, when does it happen? When does it not?
– How about Java?
– (since python is interpreted not an issue here)

Dynamic dispatch
● Lets talk dynamic dispatch

– How does it work?
– C++, when does it happen? When does it not?

● In Go – interface methods use dynamic dispatch.

Sort.Interface
● How do you sort arbitrary collections

– In python?
– In java?
– In C++
– Anyone want to talk about something else?

Sort.Interface
● In Go:

– Implement sort of Interface //below is official go code from sort.go
● type SampleInterface interface {
●

● // Len is the number of elements in the collection.
● Len() int
●

● // Less reports whether the element with
● // index i should sort before the element with index j.
● Less(i, j int) bool
●

● // Swap swaps the elements with indexes i and j.
● Swap(i, j int)

● }

So how about that sort.Interface
● What do you think?

So how about that sort.Interface
● What do I think?

– I like python better for starter stuff
● Just defining one sort key function (the less function

equivalent) is nicer to start
● Can see that this works for any data structure

– Nice, but not sure Go is ready for CS1, CS2 or Data Structures.

Type Assertions
● Type Assertions

– Used to check/cast interface type to
● Actual concrete type
● Another interface type

– Interface var x and Type T
– x.(T) will assert the type and return x as a T or panic

● What you just wanted to check?

Type Assertions
● Type Assertions

– Used to check/cast interface type to
● Actual concrete type
● Another interface type

– Interface var x and Type T
– x.(T) will assert the type and return x as a T or panic

● What you just wanted to check?
● realVal, ok := x.(realType)
●

Common look for type assertions
● If file, ok := w.(*os.File); ok{

– //Use file here
– }

● Recall that first statement does assignment,
second statement (just checking Boolean value of
‘ok’) is used for the if statement.

Comparing interfaces

● What about comparing interfaces
– Can be compared if

● Both are nil
● The underlying concrete type for both is same
● The concrete objects are comparable and == returns true

co-routines

● If you are ‘of a certain age” you’ve heard of
coroutines.
– Functions that hold state between calls, used in

non-preemptive multitasking

Goroutines
● So Go, being Punny (but not puny) has
● Goroutines

– book: threads that work right
● Go official: go routines are “Green threads” managed by go

runtime rather than OS
– Any function can be go routine
– Keyword go before function call

Goroutines live forever

● Well sorta,
– Will end when main.main ends
– Or you can ask them to end

Sequential vs Concurrent
● Image credit:

– https://medium.com/@k.wahome/concurrency-is-no
t-parallelism-a5451d1cde8d

https://medium.com/@k.wahome/concurrency-is-not-parallelism-a5451d1cde8d
https://medium.com/@k.wahome/concurrency-is-not-parallelism-a5451d1cde8d

Channels

● Used to communicate between go routines
● Have you done the producer/consumer lab yet in OS?

– Lets have one of the CS background folks give us the
nutshell summary since we probably have a couple of
students who haven’t seen it yet

● Channels
– communication between go routines
– One goroutine writes and the other reads.

Make a Channel

● Make a channel with make
– make(chan <type>)
– Makes a channel of type <type> with no buffering
– Sending data on unbuffered channel like this will

block sender till receiver reads data
–

Deadlock

● What is deadlock?

Deadlock

● What is deadlock?
– All processes are blocked waiting for others

● Golang solves some deadlocks
– If all goroutines associated with a particular channel

are blocked
● Go panics.

So how do you do it?
● data := make(chan int)
● In one go routine

– data <- 3 //writes 3 to the data channel and sleeps till
other go routine reads

● In The other Go routine
– val := <- data //read a value from data channel and

stuff it into val
–

Producer consumer in Go
● func producer(link chan<- string) { //specify the link channel as send only

– for _, m := range messages { //messages is a slice of strings, I committed it for space considerations.
– link <- m
– }
– close(link)

● }
●

● func consumer(link <-chan string, done chan<- bool) {//specify link as receive only
– for b := range link {
– fmt.Println(b)
– }
– done <- true

● }
●

● func main() {
– link := make(chan string)
– done := make(chan bool)
– go producer(link)
– go consumer(link, done)
– <-done //block till something gets sent to done

● }

You can find the original code without my comments
(and additional examples) at

https://medium.com/better-programming/hands-on-g
o-concurrency-the-producer-consumer-pattern-c42aa
b4e3bd2

https://medium.com/better-programming/hands-on-go-concurrency-the-producer-consumer-pattern-c42aab4e3bd2
https://medium.com/better-programming/hands-on-go-concurrency-the-producer-consumer-pattern-c42aab4e3bd2
https://medium.com/better-programming/hands-on-go-concurrency-the-producer-consumer-pattern-c42aab4e3bd2

For next time

● Lets do the seminar approach in the
– Lets talk about the podcast cup-o-go
– What stood out to you?

JSON
● What do you all know about JSON?

– Acknowledge pronunciation issues
– Student ‘volunteers’?

For those not familiar

Data on the Internet
● Once upon a time

– Data on the web (http/https) was all web pages intended to be
viewed by people.

● If we wanted to have a program read the data – need to ‘scrape’
the page.

● Back in 2000, Roy Fielding proposes REST framework (Ph.D thesis)
– REpresentational State Transfer
– Provide a way for web server to give data directly to program clients.
– In last 5-10 years really used a lot

json
● json: JavaScript Object Notation

– pronunciation note
– json notation used by many RESTful interfaces to provide data
– Says javascript but not really
– Java vs javascript?
– Java is to javascript as?

json
● json: JavaScript Object Notation

– pronunciation note
– json notation used by many RESTful interfaces to provide data
– Says javascript but not really
– Java vs javascript?
– Java is to javascript as?

● Car is to Carpet
● Official json spec

– http://www.json.org/

http://www.json.org/

Sample json
● From https://openlibrary.org/dev/docs/api/lists
● {
● "links": {
● "self": "/people/george08/lists.json",
● "next": "/people/george08/lists.json?limit=5&offset=5"
● },
● "size": 12,
● "entries": [
● {
● "url": "/people/george08/lists/OL13L",
● "full_url":

"/people/george08/lists/OL13L/Various_Seeds_for_Testing"
,

● "name": "Various Seeds for Testing",
● "last_update": "2010-12-21T00:46:17.712513",
● "seed_count": 13,
● "edition_count": 13181
● },
●

● {
● "url": "/people/george08/lists/OL97L",
● "full_url":

– "/people/george08/lists/OL97L/Time_Travel",
● "name": "Time Travel",
● "last_update": "2010-12-17T18:27:14.781336",
● "seed_count": 5,
● "edition_count": 838
● },
● ...
●]}

https://openlibrary.org/dev/docs/api/lists

From the web
● To get data from the web we use what protocol?

From the web
● To get data from the web we use what protocol?
● http(s) right?
● Go has you covered in the standard library

– net/http package
– See http.Get(URLLoc)

– Returns a response struct and an error
● https://golang.org/src/net/http/response.go
● Mostly we care about StatusCode
● And Body

https://golang.org/src/net/http/response.go

Painless Json in go
● OK well ‘painless’ is optimistic, but far less painful

than it was just 2 years ago.
● Use the encoding/json package.

– After we use ioutil.ReadAll on the response.Body we
have an array of bytes with the json in it.

– Use json.Unmarshal to get a slice of structs
● https://gobyexample.com/json
● https://golang.org/pkg/encoding/json/#Unmarshal
●

https://gobyexample.com/json
https://golang.org/pkg/encoding/json/#Unmarshal

Lets try it

● If there is time lets try it on this free University API
● http://universities.hipolabs.com/search?name=you

ng
● Example from a couple years ago

– https://github.com/jsantore/APIgo2022
● Lets go through it and make sure you are

comfortable with it

http://universities.hipolabs.com/search?name=young
http://universities.hipolabs.com/search?name=young
https://github.com/jsantore/APIgo2022

In class Exercise
● If there is time (and there should be)

– Lets ask the user on the command line for the
search term rather than hard coding ‘young”

– Second, lets add a method to the UniversityData
struct to print a University Data nicely and call it in
line 29

Go:embed

● Amazing new feature added a few years ago.
– You can embed files directly into the go program (the

final executable) so all you have to give someone is a
single executable file

– Text files, images etc
– Makes executable bigger, but no missing files possible

Go:embed II

● Usage
● You need the go:embed directive in a comment immediately over a global

variable, which will hold the embedded asset
● Eg:

//go:embed assets/*
var EmbeddedAssets embed.FS

● This will take everything in the assets subfolder of the project and treat it as
a file system

Go:Embed III
● Example loading image from embedded file system – even easier for a text file

func loadPNGImageFromEmbedded(name string) *ebiten.Image {
pictNames, err := EmbeddedAssets.ReadDir("assets")
if err != nil {
log.Fatal("failed to read embedded dir ", pictNames, " ", err)
}
embeddedFile, err := EmbeddedAssets.Open("assets/" + name)
if err != nil {
log.Fatal("failed to load embedded image ", embeddedFile, err)
}
rawImage, err := png.Decode(embeddedFile)
if err != nil {
log.Fatal("failed to load embedded image ", name, err)
}
gameImage := ebiten.NewImageFromImage(rawImage)
return gameImage

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

