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Examining Go

Go Part 2, what makes it Go?
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Admin
● Anyone new?
● Assignment: 

– Make a github account if you don’t have one and send me your 
githubID via MSTeams or email (some official BSU channel)

– After today read chapters 4-5, maybe more if we get further. 
●

● BIG Caveat:
– Since you are advanced students, I’m showing the highlights 

here, you need to dig in further on your own.
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Speaking of Constants
● A useful constant form in go :

– Create a series of names constants with incremented 
values 

● Sort of like enums in C-like languages
– const(

● val1 = iota
● val2
● ...
● valN 
● )

– val1 is zero, then each valX after gets next value
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Arrays in Go
● Arrays in Go are interesting

– Standard fixed size, homogeneous, contiguous data 
structure

● Must declare type and size at compile time
– Eg:

● var octoOfInts [8]int;
● var tripleOfStrings [3]string = [3]string{“s”, “t”, “u”}

–

– If not given initial values, then zero value for type 
is assigned.

● fmt.Printf(octoOfInts)  [0,0,0,0,0,0,0,0]→
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Arrays II
● If you specify elements of array at creation time, Go can 

infer the size of the array
– Use ellipsis as size
– BunchOfTemps := [...]int{74, 80, 54, 96, 97, 96}
– Finally you can specify locations of values when creating 

arrays: use those constants to help us
● type EmployeeId int
● const(

– BEN EmployeeId = iota
– ANN
– JJ
– JED
– )
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Arrays III
● Now we can use these to declare arrays
● //jj was on vacation for the week and didn’t get any 
● //hours
● PayrollForWeek := [...]float32{BEN: 300.67, JED: 
500.99, ANN: 765.43}

●  A few things to note:
– Multiline statements possible, just end line where a statement 

can’t end (implicit semicolons) 
– fmt.Printf(“%v”, PayrollForWeek) → [300.67 
765.43 0 500.99]

– Notice that we created the array ‘out of order’ but it 
prints in order
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Arrays IV
● Arrays are passed by value in Go 

– like all params (except when passing pointers) 
– Not like C++/Java

● Array size is part of the type in go
– And Go is a strongly typed language
– So what does this mean for parameters in functions?
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Arrays IV
● Arrays are passed by value in Go 

– like all params (except when passing pointers) 
– Not like C++/Java

● Array size is part of the type in go
– And Go is a strongly typed language
– So what does this mean for parameters in functions?

● You need a different function for every size of array 
if you take an array. These differ:

– func reverse(ptr *[8]int){…
– func reverse(ptr *[16]int){...
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Slices
● Arrays are great, but limited, no growth, typing is difficult
● So Go says: ‘use slices’

– In Go slices are a “view” into a sequence data
● Usually arrays, but also strings

– Every slice has an array under it, but slices grow and have 
variable size.

– Every slice has:
● pointer to an array element (first item in slice)
● len (how many elements in slice
● cap (how many elements till end of underlying array)  
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Slices II
● Create an empty slice:

– var emptySlice []int
– len is 0; emptySlice == nil

● Create a slice with lots of zero values using make
          names := make([]string, 5, 10)

– Makes a sequence of type <first param> with len 
<second param> and capacity <third param>

● If cap isn’t specified, len and cap are same
– Going past len in a slice expands the slice
– Going past cap, causes panic
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Slices III

● Since slices are just these three values
– The data pointer points at the data in the 

array
– Slices are passed by value

● Like all parameters
– But like java, you can’t change what the slice 

points at in the caller, but you can change the 
value of the slice for the caller.
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Maps
● Maps in Go

– Are hash tables. Fast access given key to find value 
O(n) space.

– Work (almost) just like dictionaries in python
– Keys must be comparable 

● a type you can use == with
● Values can be any type

– Trying to retrieve a key/value not in the map returns 
the zero value

● Check ok if you really need to know (see next slide) 
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Making Maps
● We can make a map with make

– wages:= make(map[string]float32)
● Or with a literal map

– wages := map[string]:float32{
● “Ed”: 450.17,
● “Ann”: 375.99,
● }

– Check ok:
– earnings, ok := wages[“John”]

● Earnings will be 0.0, ok will be false.
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A brief Digression
● A quick aside

– Here is how you might read from a text file in go
– Import “io/ioutil”

             byteArray, err := ioutil.ReadFile("file.txt") //in goland project 
directory is working directory

       str := string(byteArray) // convert file contents to a string
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In class exercise
● As an in class exercise,

– Lets grab the silly ‘recommendation’ from the 
resources page

– Write a program which opens the text file reads it in 
and prints out every other line to the screen.

–  Simple, but gives us a chance to actually write some 
go.
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Assignment

● At this point go over the simple first go project
● Some of you might have seen this already 
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Structs
● Structs in Go are aggregate data types

– If you squint hard enough they look like c-structs
– A collection of named typed fields
– Eg:
– type Player struct {

name string
health int
jumpDistance int

}

– Creates a struct type with 3 fields, 
● var player1 Player //creates a variable player1 
of type Player with zero value for the fields

– Access fields in a C-like manner
● player1.jumpDistance = 3
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Structs II
● Two structs have the same type if:

– They have the same number of fields
– Of the same type
– In the same order

● Can create struct with literal
– var player2 = Player{“Mario”, 1, 2}
– Or
– Var player3 = Player{name: “Luigi”, health:1} 
– //note jump distance not supplied so zero.

● Looking at this code, what can you tell me about the 
packages for this code and the Player struct?
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Structs II
● Can create struct with literal

● var player2 = Player{“Mario”, 1, 2}
– Or

● Var player3 = Player{name: “Luigi”, health:1} 
● //note jump distance not supplied so zero.

● Looking at this code, what can you tell me about the 
packages for this code and the Player struct?
– They have to be in the same package

● The struct name is Capitalized and exported
● But the field names are not – so can’t access fields from another 

package.
● Of course don’t do this in ‘real life’
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Structs III

● Structs can have another struct as a member
– But no recursive definitions
– Must use pointer for recursive.

● Embedded structs have a “lazy programmer” 
hack

● type saveGame struct{
– p Player
– Size int
– }
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Structs IV
● Suppose someone hands me a saveGame from another 

method
– MySave := <some function call here>

● I want to find and display the name of the player from 
the save
– Access with MySave.p.name
– This could be a pain if there are lots of embedded 

structs – so see next slide
–
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Structs V
● Use struct with anonymous fields

– Eg
● type SaveGame struct{
● Player
● Size int
● }

– Now
● MySave := <some function call here>
● MySave.name

– Ahh “programmers are lazy” works as long as there 
are no fields with same name in anonymous fields
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And now
● Now a deeper look at functions.
● Remember go functions

– Func <name> (<parameter list) (return list){
● Function body

– }
● No default param values in go
● Parameters and return variables are local variables with 

widest scope in function
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Return variables
● Return variables – lets look at this function 

func factorial(n int) (answer int, err error){
if n<0{

answer = -1; err = errors.New("can use negative number for factorial"); return 
}
answer = 1
for ;n>0; n--{

answer *= n
}
return 

}

– answer and err are return variables
● Initialized to zero values when function starts
● Need to give useful values before function returns
● Functions that have return types must end in 

return  



  25 / 43

Anonymous Return 
● Same function without return variables 

func factorial(n int) (int, error){
if n<0{

return -1, errors.New("can use negative number for factorial")  
}
answer := 1
for ;n>0; n--{

answer *= n
}
return answer, nil

}

– Now return values explicitly
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Recursion

● Recursion works in go – as always make sure to 
have your base case first.

● Book is only place I’ve seen that walks through 
recursion with multivalue returns, have a look.

● Page 126-127
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Errors
● As discussed

– No exceptions in go
– Errors as (traditionally/conventionally) the last return 

value in multi value return
– Since you can’t have an unused variable, must handle 

the error
– What about _ ?

●
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Errors
● As discussed

– No exceptions in go
– Errors as (traditionally/conventionally) the last return 

value in multi value return
– Since you can’t have an unused variable, must handle 

the error
– What about _ ?

● don’t, just don’t, it would be a terrible, horrible, no 
good very bad idea.

● And most of the time will not compile anyway
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Errors
● Error is an interface

– More on that later
● Functions that always succeed: no need for errors
● Functions that throw exceptions in other languages

– Likely need error return values 
● Can create your own error types

– And check the type of the error in the caller to see 
what sort of error it was

● React appropriately (eg page 132)
– Sorta like exceptions 
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Errors
● As we’ve seen,

– Idiomatic in Go to handle errors before success (and 
then forget that the error occurred)

● If the error is not recoverable
– log.fatal will record in log file and then exit 

program
– For lesser errors, warn and continue with 

reduced functionality (network down for 
example)
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Functions are first class
● Functions are first class values in Go

– Like python and rust (but not java and C/C++)
– Can assign a function (not the result but the function 

itself) to a variable
– Functions are not comparable (no ==)

● So not as keys to map.
● But can be compared to nil (zero value for 

function)
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Functions in functions
● You can declare functions in other functions

– Example from golang-book.com
– func main() {
–   add := func(x, y int) int {
–     return x + y
–   }
–   fmt.Println(add(1,1))
– }
– Parameter types and return type signature defines go 

function types
–
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Function Types
● Given the assignment to add in previous slide, one of 

these will compile and one will error. Which is which?
add= func(x, y int64) int64{

return x+y
}

add = func(first, second int) int{
return first + second

}
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