
 1 / 43

Examining Go

Go Part 2, what makes it Go?

 2 / 43

Admin
● Anyone new?
● Assignment:

– Make a github account if you don’t have one and send me your
githubID via MSTeams or email (some official BSU channel)

– After today read chapters 4-5, maybe more if we get further.
●

● BIG Caveat:
– Since you are advanced students, I’m showing the highlights

here, you need to dig in further on your own.

 3 / 43

Speaking of Constants
● A useful constant form in go :

– Create a series of names constants with incremented
values

● Sort of like enums in C-like languages
– const(

● val1 = iota
● val2
● ...
● valN
●)

– val1 is zero, then each valX after gets next value

 4 / 43

Arrays in Go
● Arrays in Go are interesting

– Standard fixed size, homogeneous, contiguous data
structure

● Must declare type and size at compile time
– Eg:

● var octoOfInts [8]int;
● var tripleOfStrings [3]string = [3]string{“s”, “t”, “u”}

–

– If not given initial values, then zero value for type
is assigned.

● fmt.Printf(octoOfInts) [0,0,0,0,0,0,0,0]→

 5 / 43

Arrays II
● If you specify elements of array at creation time, Go can

infer the size of the array
– Use ellipsis as size
– BunchOfTemps := [...]int{74, 80, 54, 96, 97, 96}
– Finally you can specify locations of values when creating

arrays: use those constants to help us
● type EmployeeId int
● const(

– BEN EmployeeId = iota
– ANN
– JJ
– JED
–)

 6 / 43

Arrays III
● Now we can use these to declare arrays
● //jj was on vacation for the week and didn’t get any
● //hours
● PayrollForWeek := [...]float32{BEN: 300.67, JED:
500.99, ANN: 765.43}

● A few things to note:
– Multiline statements possible, just end line where a statement

can’t end (implicit semicolons)
– fmt.Printf(“%v”, PayrollForWeek) → [300.67
765.43 0 500.99]

– Notice that we created the array ‘out of order’ but it
prints in order

 7 / 43

Arrays IV
● Arrays are passed by value in Go

– like all params (except when passing pointers)
– Not like C++/Java

● Array size is part of the type in go
– And Go is a strongly typed language
– So what does this mean for parameters in functions?

 8 / 43

Arrays IV
● Arrays are passed by value in Go

– like all params (except when passing pointers)
– Not like C++/Java

● Array size is part of the type in go
– And Go is a strongly typed language
– So what does this mean for parameters in functions?

● You need a different function for every size of array
if you take an array. These differ:

– func reverse(ptr *[8]int){…
– func reverse(ptr *[16]int){...

 9 / 43

Slices
● Arrays are great, but limited, no growth, typing is difficult
● So Go says: ‘use slices’

– In Go slices are a “view” into a sequence data
● Usually arrays, but also strings

– Every slice has an array under it, but slices grow and have
variable size.

– Every slice has:
● pointer to an array element (first item in slice)
● len (how many elements in slice
● cap (how many elements till end of underlying array)

 10 / 43

Slices II
● Create an empty slice:

– var emptySlice []int
– len is 0; emptySlice == nil

● Create a slice with lots of zero values using make
 names := make([]string, 5, 10)

– Makes a sequence of type <first param> with len
<second param> and capacity <third param>

● If cap isn’t specified, len and cap are same
– Going past len in a slice expands the slice
– Going past cap, causes panic

 11 / 43

Slices III

● Since slices are just these three values
– The data pointer points at the data in the

array
– Slices are passed by value

● Like all parameters
– But like java, you can’t change what the slice

points at in the caller, but you can change the
value of the slice for the caller.

 12 / 43

Maps
● Maps in Go

– Are hash tables. Fast access given key to find value
O(n) space.

– Work (almost) just like dictionaries in python
– Keys must be comparable

● a type you can use == with
● Values can be any type

– Trying to retrieve a key/value not in the map returns
the zero value

● Check ok if you really need to know (see next slide)

 13 / 43

Making Maps
● We can make a map with make

– wages:= make(map[string]float32)
● Or with a literal map

– wages := map[string]:float32{
● “Ed”: 450.17,
● “Ann”: 375.99,
● }

– Check ok:
– earnings, ok := wages[“John”]

● Earnings will be 0.0, ok will be false.

 14 / 43

A brief Digression
● A quick aside

– Here is how you might read from a text file in go
– Import “io/ioutil”

 byteArray, err := ioutil.ReadFile("file.txt") //in goland project
directory is working directory

 str := string(byteArray) // convert file contents to a string

 15 / 43

In class exercise
● As an in class exercise,

– Lets grab the silly ‘recommendation’ from the
resources page

– Write a program which opens the text file reads it in
and prints out every other line to the screen.

– Simple, but gives us a chance to actually write some
go.

 16 / 43

Assignment

● At this point go over the simple first go project
● Some of you might have seen this already

 17 / 43

Structs
● Structs in Go are aggregate data types

– If you squint hard enough they look like c-structs
– A collection of named typed fields
– Eg:
– type Player struct {

name string
health int
jumpDistance int

}

– Creates a struct type with 3 fields,
● var player1 Player //creates a variable player1
of type Player with zero value for the fields

– Access fields in a C-like manner
● player1.jumpDistance = 3

 18 / 43

Structs II
● Two structs have the same type if:

– They have the same number of fields
– Of the same type
– In the same order

● Can create struct with literal
– var player2 = Player{“Mario”, 1, 2}
– Or
– Var player3 = Player{name: “Luigi”, health:1}
– //note jump distance not supplied so zero.

● Looking at this code, what can you tell me about the
packages for this code and the Player struct?

 19 / 43

Structs II
● Can create struct with literal

● var player2 = Player{“Mario”, 1, 2}
– Or

● Var player3 = Player{name: “Luigi”, health:1}
● //note jump distance not supplied so zero.

● Looking at this code, what can you tell me about the
packages for this code and the Player struct?
– They have to be in the same package

● The struct name is Capitalized and exported
● But the field names are not – so can’t access fields from another

package.
● Of course don’t do this in ‘real life’

 20 / 43

Structs III

● Structs can have another struct as a member
– But no recursive definitions
– Must use pointer for recursive.

● Embedded structs have a “lazy programmer”
hack

● type saveGame struct{
– p Player
– Size int
– }

 21 / 43

Structs IV
● Suppose someone hands me a saveGame from another

method
– MySave := <some function call here>

● I want to find and display the name of the player from
the save
– Access with MySave.p.name
– This could be a pain if there are lots of embedded

structs – so see next slide
–

 22 / 43

Structs V
● Use struct with anonymous fields

– Eg
● type SaveGame struct{
● Player
● Size int
● }

– Now
● MySave := <some function call here>
● MySave.name

– Ahh “programmers are lazy” works as long as there
are no fields with same name in anonymous fields

 23 / 43

And now
● Now a deeper look at functions.
● Remember go functions

– Func <name> (<parameter list) (return list){
● Function body

– }
● No default param values in go
● Parameters and return variables are local variables with

widest scope in function

 24 / 43

Return variables
● Return variables – lets look at this function

func factorial(n int) (answer int, err error){
if n<0{

answer = -1; err = errors.New("can use negative number for factorial"); return
}
answer = 1
for ;n>0; n--{

answer *= n
}
return

}

– answer and err are return variables
● Initialized to zero values when function starts
● Need to give useful values before function returns
● Functions that have return types must end in

return

 25 / 43

Anonymous Return
● Same function without return variables

func factorial(n int) (int, error){
if n<0{

return -1, errors.New("can use negative number for factorial")
}
answer := 1
for ;n>0; n--{

answer *= n
}
return answer, nil

}

– Now return values explicitly

 26 / 43

Recursion

● Recursion works in go – as always make sure to
have your base case first.

● Book is only place I’ve seen that walks through
recursion with multivalue returns, have a look.

● Page 126-127

 27 / 43

Errors
● As discussed

– No exceptions in go
– Errors as (traditionally/conventionally) the last return

value in multi value return
– Since you can’t have an unused variable, must handle

the error
– What about _ ?

●

 28 / 43

Errors
● As discussed

– No exceptions in go
– Errors as (traditionally/conventionally) the last return

value in multi value return
– Since you can’t have an unused variable, must handle

the error
– What about _ ?

● don’t, just don’t, it would be a terrible, horrible, no
good very bad idea.

● And most of the time will not compile anyway

 29 / 43

Errors
● Error is an interface

– More on that later
● Functions that always succeed: no need for errors
● Functions that throw exceptions in other languages

– Likely need error return values
● Can create your own error types

– And check the type of the error in the caller to see
what sort of error it was

● React appropriately (eg page 132)
– Sorta like exceptions

 30 / 43

Errors
● As we’ve seen,

– Idiomatic in Go to handle errors before success (and
then forget that the error occurred)

● If the error is not recoverable
– log.fatal will record in log file and then exit

program
– For lesser errors, warn and continue with

reduced functionality (network down for
example)

 31 / 43

Functions are first class
● Functions are first class values in Go

– Like python and rust (but not java and C/C++)
– Can assign a function (not the result but the function

itself) to a variable
– Functions are not comparable (no ==)

● So not as keys to map.
● But can be compared to nil (zero value for

function)

 32 / 43

Functions in functions
● You can declare functions in other functions

– Example from golang-book.com
– func main() {
– add := func(x, y int) int {
– return x + y
– }
– fmt.Println(add(1,1))
– }
– Parameter types and return type signature defines go

function types
–

 33 / 43

Function Types
● Given the assignment to add in previous slide, one of

these will compile and one will error. Which is which?
add= func(x, y int64) int64{

return x+y
}

add = func(first, second int) int{
return first + second

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

