Intro to Go

Where did it come from, where did it Go?



Admin

* Syllabus
- Anyone new this class? Get a Syllabus

* Any trouble installing the tool chains?



Go headline features

* Go (Sometimes calls Golang)

- Headline features:

¢ Compiled
* Statically typed

- Variable will always refer to same type of value
 Structurally Typed

- Type equivalence by definition not name
* Memory safe

- No buffer overflows, unsafe pointer operations
* Garbage collected

* Focus on concurrency

-  One of GO's claims to fame



Go Pedigree

* Came from google

- Just as java came from Sun(Oracle)
- Originally by
* Robert Griesemer, Rob Pike, and Ken Thompson

* Open source

- https://go.googlesource.com/go

* git clone https://go.googlesource.com/go
- “BSD-style” licence

* https://golang.org/LICENSE


https://go.googlesource.com/go

Go A First impression

* From original go book (Donovan and Kernighan)- chapter 1 (not updated since 2016)

- package main
- import (
* "fmt"
* "io/ioutil"
* "net/http"
* "os"
° )
- func main() {
e for _, url:=range os.Args[1:]{
* resp, err := http.Get(url)
* iferr!=nil {
- fmt.Fprintf(os.Stderr, "fetch: %v\n", err)
- 0s.Exit(1)
° )
* b, err:=ioutil.ReadAll(resp.Body)
* resp.Body.Close()
e iferr!=nil{

- fmt.Fprintf(os.Stderr, "fetch: reading %s: %v\n", url, err)

- 0s.Exit(1)
°}
* fmt.Printf("%s", b)
*}



Go A First Impression

* When I first looked at Go
- It looked like python and C++ had a baby

- Of course I don’t know algol

* Python philosophy :
- There is one ‘right’ way to do things
- (harder to see recently)

- This is pythonic, but not enforced by compiler/interpreter.

* With go - often is enforced by compiler



Good Style

* Go ‘Good Style' is often compiler enforced

- Unused variables are a compiler error

- Unused imports are a compiler error

* Online flame wars are often about what “good style” is

* Go often settles these by making the compiler only
work for the approved style

* Your book explains some of this in a little more depth
in chapter 1 (eg page 7)



* Go helps you be compile ready with gofmt

- Can run on command line

* Orlet goland do it for you.
- Gofmt pronunciation

* Do you go with the majority?

* Or with the crusading minority?
- Gofmt sort of like python-black

* Simply rewrites your code to be ‘proper’ (idiomatic) go



So Go, Syntactically

* So lets take a “brief” look at how go
implements most of the programming
constructs you'll need



Comments

* Comments are really useful when learning a
language
* Comments in Go same as C++
- Go took them just like java did
- // line comments
— /*
- Multiline comments
— */



Variables

* Variables are statically typed, but type can
be inferred

— var name string //creates a new variable called name
of type string with an empty string

- var name2 = "“"Imelda” //creates a new variable called
name2 of type string with initial value “Imelda”

- var num1, num2 int = 100, 300
- var3 :=3.14159



Types

* Go, like java, has distinction between basic
types and all other types

* Basic types:

- Boolean
- string
- and number (several number types)

* uint8, uint16, uint32, uinté4, int8, int16, int32 and int64,
etc see chap 2 in learning go book.




* Two slides ago - var3 was clearly what?



Constants

* Two slides ago - var3 was clearly what?
* Piright? So it really shouldn’t be a variable

* Constants in go, more like C++ than python
- const pi = 3.14159 //math.Pi is better

- can't be changed

— Notice constant is lower case

* Most languages have upper case.

* Why? (class discussion)



Go Project is a package

* Your go project is a package

- You remember from last time, main package is
the one that runs first.

* If you want to use a function or variable in
C/C++ from one file to another how do you
do it?



Go Project is a package

* Your go project is a package

- You remember from last time, main package is the
one that runs first.

* If you want to use a function or variable in C/C+
+ from one file to another how do you do it?

- Put the declaration in a header and import the
header right? (then link everything of course)

* How about python?



Go Project is a package

* Your go project is a package

- You remember from last slide set, main package is the one that
runs first.

* If you want to use a function or variable in C/C++ from one
file to another how do you do it?

- Put the declaration in a header and import the header right? (then
link everything right) maybe make public

* How about python?
- pip install and then import. No public/private needed

* Java?



Go exported symbols

* If you want to use something® outside of its
module in go

- *Function, variable, class etc
* Name that with a first letter capitalized.

- Names beginning with caps are exported

- Names beginning with lowercase are not.

* There now I've saved you an hour of banging your head
against your keyboard



Functions

* Create a function in go using keyword func,

- func <function name>(<param list>) <ret type>{

* <function body>
° }
- A few things to look at here:

* Return type is after param list (unlike java/c/C++, but like
python/swift)

* Param list can be empty, when not, param name first then type

* And that opening brace? It must be there. Compile error for
being on next line.

- Avoids one of the favorite java flame wars



Example Function

* A simple example function from the golang
tour
- func add(x int, y int) int {
° returnx +y
~}



Multi value returns

* Some language (eg python, lisp) support multi value returns
- Mostly interpreted languages
* Go embraces multi-value returns and really uses it.

* From the http standard library:

* func Get(url string) (resp *Response, err error) {
- return DefaultClient.Get(url)

° }

* resp is a Response pointer, second return value as error is
the go way.



Functions II

* A function using http.Get

package main

import (
llfmtll
II'LogII
"net/http"
)

func main() {
response, err := http.Get("https://news.ycombinator.com/")

if err = nil{
log.Fatal(err)
}

defer response.Body.Close()
fmt.Print(response.Body)

}

- A few things:
- First the multiple returns are captured by two new variables

- The err is checked first, then ignored.
* No exceptions - discuss



Imports

* In previous slide imports to use code from other
packages

- And their exported symbols
* Import a single package
- import “fmt”

* More commonly, import multiple packages

import (
Ilfmtll
Illogll
"net/http"
)

* Important an unused library is a compile error

- gofmt to the rescue - run automatically by goland



Selection

* Selection in Go (AKA if)

- if <condition/Boolean>{
* <do this if true>
°}
* Or
- if <condition/Boolean>{

* <do this if true>
* lelse{
* <do this if false>
°}
- No parens around condition, but must have braces {} around
body even if one line



Statements

* How does a java statement end?



Statements

* How does a java statement end?

I

- Same as c¢/c++/C# and other “c-like” languages\

* How does a python statement end?



Statements

* How does a java statement end?

I

- Same as c¢/c++/C# and other “c-like” languages\
* How does a python statement end?

- With the end of the line except for special
circumstances



Go Statements

* How Does a go Statement end?

* Reminder:

package main

import (
"fmt"
"io/ioutil"
II'LogII
“"net/http"
)
func main() {
response, err := http.Get("https://news.ycombinator.com/")
if err !'= nil{
log.Fatal(err)
¥
defer response.Body.Close()
dataAsBytes, err := ioutil.ReadAll(response.Body)

if err !'= nil{
log.Fatal(err)
¥

fmt.Print(string(dataAsBytes))

* Code is a mangling of
https://www.devdungeon.com/content/web-scraping-go



Go Statements

* How Does a go Statement end?

* Reminder:

package main

import (
n fmtll
"io/ioutil"
Il'l-og n
"net/http"
)

func main() {

response, err := http.Get("https://news.ycombinator.com/")
if err !'= nil{
log.Fatal(err)

¥
defer response.Body.Close()
dataAsBytes, err := ioutil.ReadAll(response.Body)
if err !'= nil{
log.Fatal(err)
}
fmt.Print(string(dataAsBytes))
}

* More like python (remember compiler puts ; in for you)

- End of line except for special circumstances



Selection II

* A more complicated selection example

* ifnum:=9; num < 0 {
fmt.Printin(num, "is negative")
} else if num < 10 {
fmt.Printin(num, "has 1 digit")
} else {

fmt.Printin(num, "has multiple digits")

}
* Notice two statements in first condition

— Also variables created in condition are available in
all later branches



Repetition

* In programming theory, two types of
repetition, definite and indefinite

- For and while in most languages

* Go has only for - which it uses for both



Basic for

* Basic for loop looks a lot like C-like language for

loop
func countDown(start int){ //in honor of falcon heavy launch
for counter := start; counter >0; counter--{

fmt.Println(counter)

}
fmt.Println("blastoff")

}
* Again
- no parens around setup, but required braces

- Scope of variables created in initialization statement
only that for-loop



C-like diversion

* Have you ever seen this in c-like languages?
- for(;;)
- {
- //do stuff here
- 1f (something)
* break;
-}
* Legal, totally unnecessary these days

- Why was it common 30-40 years ago?



C-like diversion

* Have you ever seen this in c-like languages?
- for(;;)
- {
- //do stuff here
- 1f (something)
* break;
-}
* Legal, totally unnecessary these days

- Why was it common 40ish years ago?

- Optimizing compilers did better with for than while



For 11

* You can omit the initialization and post part of the for
(not the condition)

- makes it functionally what other languages use while

- func main() {
° sum :=1
* for ; sum < 1000; {
° sum += sum
° )
* fmt.Println(sum)
-} //Fxrom https://tour.golang.org/flowcontrol/2

- Semi colons are optional - can be dropped



ever for's

* Oh look, Go’s puns have infected your instructor

* While (true) is spelled differently in go. If we
want to loop forever (till break)

* for{

 //Do something forever

° )



Break

* As with most languages Go has break

- Breaks out of the innermost for, switch or select

* For we saw.
* Switch works like C-like switch (mostly)

* Select we'll defer (all puns intended) on (used like
switch but for messages)



Strings

* Strings are officially “an immutable sequence of
bytes”

Can contain 0 (null byte)

Usually interpreted as UTF-8 (unicode)

Utf-8 characters are called ‘runes’

len(string) returns number of bytes not runes

Use utf8.RuneCountInString(<string>) to find out how
many characters are in string.

* See book description (page 50 in the inset box) for the
varying number of bytes in a utf-8 Character/rune



Strings II

* Strings can be slices in go just like in python

- Substring/slices are very fast

- Because strings are immutable

* Slices/substrings share same memory as parent string.

* Suppose you want to programmatically build a
string from parts

- From go 1.10 on use strings.Builder

- Before that either inefficient concate += or write
bytes (uggg shades of java 1.2)



String Builder

* Since go 1.10 use strings.Builder to concat strings

* Example:

- func join(strs ...string) string {
- var sb strings.Builder
- for _, str := range strs {

- sb.WriteString(str)
-}
- return sb.String()
-}
* Range iterates over elements in data structures

- First return value is usually element number



Basics

* Now you know how to do all of CS1 in go

* More Go next time. Assignment next.



Assignment

* Read chapters preface & 1-3 of the Learning
Go book.

- Those of you who were here for the first class
already read preface and chapter 1.

- A mix of easy reading and deeper reading. Plan
to take some time for it

- And play with it. Assignment next time to stretch
your gopher wings.
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