Intro to Go

Where did it come from, where did it Go?

Admin

* Syllabus
- Anyone new this class? Get a Syllabus

* Any trouble installing the tool chains?

Go headline features

* Go (Sometimes calls Golang)

- Headline features:

¢ Compiled
* Statically typed

- Variable will always refer to same type of value
 Structurally Typed

- Type equivalence by definition not name
* Memory safe

- No buffer overflows, unsafe pointer operations
* Garbage collected

* Focus on concurrency

- One of GO's claims to fame

Go Pedigree

* Came from google

- Just as java came from Sun(Oracle)
- Originally by
* Robert Griesemer, Rob Pike, and Ken Thompson

* Open source

- https://go.googlesource.com/go

* git clone https://go.googlesource.com/go
- “BSD-style” licence

* https://golang.org/LICENSE

https://go.googlesource.com/go

Go A First impression

* From original go book (Donovan and Kernighan)- chapter 1 (not updated since 2016)

- package main
- import (
* "fmt"
* "io/ioutil"
* "net/http"
* "os"
°)
- func main() {
e for _, url:=range os.Args[1:]{
* resp, err := http.Get(url)
* iferr!=nil {
- fmt.Fprintf(os.Stderr, "fetch: %v\n", err)
- 0s.Exit(1)
°)
* b, err:=ioutil.ReadAll(resp.Body)
* resp.Body.Close()
e iferr!=nil{

- fmt.Fprintf(os.Stderr, "fetch: reading %s: %v\n", url, err)

- 0s.Exit(1)
°}
* fmt.Printf("%s", b)
*}

Go A First Impression

* When I first looked at Go
- It looked like python and C++ had a baby

- Of course I don’t know algol

* Python philosophy :
- There is one ‘right’ way to do things
- (harder to see recently)

- This is pythonic, but not enforced by compiler/interpreter.

* With go - often is enforced by compiler

Good Style

* Go ‘Good Style' is often compiler enforced

- Unused variables are a compiler error

- Unused imports are a compiler error

* Online flame wars are often about what “good style” is

* Go often settles these by making the compiler only
work for the approved style

* Your book explains some of this in a little more depth
in chapter 1 (eg page 7)

* Go helps you be compile ready with gofmt

- Can run on command line

* Orlet goland do it for you.
- Gofmt pronunciation

* Do you go with the majority?

* Or with the crusading minority?
- Gofmt sort of like python-black

* Simply rewrites your code to be ‘proper’ (idiomatic) go

So Go, Syntactically

* So lets take a “brief” look at how go
implements most of the programming
constructs you'll need

Comments

* Comments are really useful when learning a
language
* Comments in Go same as C++
- Go took them just like java did
- // line comments
— /*
- Multiline comments
— */

Variables

* Variables are statically typed, but type can
be inferred

— var name string //creates a new variable called name
of type string with an empty string

- var name2 = "“"Imelda” //creates a new variable called
name2 of type string with initial value “Imelda”

- var num1, num2 int = 100, 300
- var3 :=3.14159

Types

* Go, like java, has distinction between basic
types and all other types

* Basic types:

- Boolean
- string
- and number (several number types)

* uint8, uint16, uint32, uinté4, int8, int16, int32 and int64,
etc see chap 2 in learning go book.

* Two slides ago - var3 was clearly what?

Constants

* Two slides ago - var3 was clearly what?
* Piright? So it really shouldn’t be a variable

* Constants in go, more like C++ than python
- const pi = 3.14159 //math.Pi is better

- can't be changed

— Notice constant is lower case

* Most languages have upper case.

* Why? (class discussion)

Go Project is a package

* Your go project is a package

- You remember from last time, main package is
the one that runs first.

* If you want to use a function or variable in
C/C++ from one file to another how do you
do it?

Go Project is a package

* Your go project is a package

- You remember from last time, main package is the
one that runs first.

* If you want to use a function or variable in C/C+
+ from one file to another how do you do it?

- Put the declaration in a header and import the
header right? (then link everything of course)

* How about python?

Go Project is a package

* Your go project is a package

- You remember from last slide set, main package is the one that
runs first.

* If you want to use a function or variable in C/C++ from one
file to another how do you do it?

- Put the declaration in a header and import the header right? (then
link everything right) maybe make public

* How about python?
- pip install and then import. No public/private needed

* Java?

Go exported symbols

* If you want to use something® outside of its
module in go

- *Function, variable, class etc
* Name that with a first letter capitalized.

- Names beginning with caps are exported

- Names beginning with lowercase are not.

* There now I've saved you an hour of banging your head
against your keyboard

Functions

* Create a function in go using keyword func,

- func <function name>(<param list>) <ret type>{

* <function body>
° }
- A few things to look at here:

* Return type is after param list (unlike java/c/C++, but like
python/swift)

* Param list can be empty, when not, param name first then type

* And that opening brace? It must be there. Compile error for
being on next line.

- Avoids one of the favorite java flame wars

Example Function

* A simple example function from the golang
tour
- func add(x int, y int) int {
° returnx +y
~}

Multi value returns

* Some language (eg python, lisp) support multi value returns
- Mostly interpreted languages
* Go embraces multi-value returns and really uses it.

* From the http standard library:

* func Get(url string) (resp *Response, err error) {
- return DefaultClient.Get(url)

° }

* resp is a Response pointer, second return value as error is
the go way.

Functions II

* A function using http.Get

package main

import (
llfmtll
II'LogII
"net/http"
)

func main() {
response, err := http.Get("https://news.ycombinator.com/")

if err = nil{
log.Fatal(err)
}

defer response.Body.Close()
fmt.Print(response.Body)

}

- A few things:
- First the multiple returns are captured by two new variables

- The err is checked first, then ignored.
* No exceptions - discuss

Imports

* In previous slide imports to use code from other
packages

- And their exported symbols
* Import a single package
- import “fmt”

* More commonly, import multiple packages

import (
Ilfmtll
Illogll
"net/http"
)

* Important an unused library is a compile error

- gofmt to the rescue - run automatically by goland

Selection

* Selection in Go (AKA if)

- if <condition/Boolean>{
* <do this if true>
°}
* Or
- if <condition/Boolean>{

* <do this if true>
* lelse{
* <do this if false>
°}
- No parens around condition, but must have braces {} around
body even if one line

Statements

* How does a java statement end?

Statements

* How does a java statement end?

I

- Same as c¢/c++/C# and other “c-like” languages\

* How does a python statement end?

Statements

* How does a java statement end?

I

- Same as c¢/c++/C# and other “c-like” languages\
* How does a python statement end?

- With the end of the line except for special
circumstances

Go Statements

* How Does a go Statement end?

* Reminder:

package main

import (
"fmt"
"io/ioutil"
II'LogII
“"net/http"
)
func main() {
response, err := http.Get("https://news.ycombinator.com/")
if err !'= nil{
log.Fatal(err)
¥
defer response.Body.Close()
dataAsBytes, err := ioutil.ReadAll(response.Body)

if err !'= nil{
log.Fatal(err)
¥

fmt.Print(string(dataAsBytes))

* Code is a mangling of
https://www.devdungeon.com/content/web-scraping-go

Go Statements

* How Does a go Statement end?

* Reminder:

package main

import (
n fmtll
"io/ioutil"
Il'l-og n
"net/http"
)

func main() {

response, err := http.Get("https://news.ycombinator.com/")
if err !'= nil{
log.Fatal(err)

¥
defer response.Body.Close()
dataAsBytes, err := ioutil.ReadAll(response.Body)
if err !'= nil{
log.Fatal(err)
}
fmt.Print(string(dataAsBytes))
}

* More like python (remember compiler puts ; in for you)

- End of line except for special circumstances

Selection II

* A more complicated selection example

* ifnum:=9; num < 0 {
fmt.Printin(num, "is negative")
} else if num < 10 {
fmt.Printin(num, "has 1 digit")
} else {

fmt.Printin(num, "has multiple digits")

}
* Notice two statements in first condition

— Also variables created in condition are available in
all later branches

Repetition

* In programming theory, two types of
repetition, definite and indefinite

- For and while in most languages

* Go has only for - which it uses for both

Basic for

* Basic for loop looks a lot like C-like language for

loop
func countDown(start int){ //in honor of falcon heavy launch
for counter := start; counter >0; counter--{

fmt.Println(counter)

}
fmt.Println("blastoff")

}
* Again
- no parens around setup, but required braces

- Scope of variables created in initialization statement
only that for-loop

C-like diversion

* Have you ever seen this in c-like languages?
- for(;;)
- {
- //do stuff here
- 1f (something)
* break;
-}
* Legal, totally unnecessary these days

- Why was it common 30-40 years ago?

C-like diversion

* Have you ever seen this in c-like languages?
- for(;;)
- {
- //do stuff here
- 1f (something)
* break;
-}
* Legal, totally unnecessary these days

- Why was it common 40ish years ago?

- Optimizing compilers did better with for than while

For 11

* You can omit the initialization and post part of the for
(not the condition)

- makes it functionally what other languages use while

- func main() {
° sum :=1
* for ; sum < 1000; {
° sum += sum
°)
* fmt.Println(sum)
-} //Fxrom https://tour.golang.org/flowcontrol/2

- Semi colons are optional - can be dropped

ever for's

* Oh look, Go’s puns have infected your instructor

* While (true) is spelled differently in go. If we
want to loop forever (till break)

* for{

 //Do something forever

°)

Break

* As with most languages Go has break

- Breaks out of the innermost for, switch or select

* For we saw.
* Switch works like C-like switch (mostly)

* Select we'll defer (all puns intended) on (used like
switch but for messages)

Strings

* Strings are officially “an immutable sequence of
bytes”

Can contain 0 (null byte)

Usually interpreted as UTF-8 (unicode)

Utf-8 characters are called ‘runes’

len(string) returns number of bytes not runes

Use utf8.RuneCountInString(<string>) to find out how
many characters are in string.

* See book description (page 50 in the inset box) for the
varying number of bytes in a utf-8 Character/rune

Strings II

* Strings can be slices in go just like in python

- Substring/slices are very fast

- Because strings are immutable

* Slices/substrings share same memory as parent string.

* Suppose you want to programmatically build a
string from parts

- From go 1.10 on use strings.Builder

- Before that either inefficient concate += or write
bytes (uggg shades of java 1.2)

String Builder

* Since go 1.10 use strings.Builder to concat strings

* Example:

- func join(strs ...string) string {
- var sb strings.Builder
- for _, str := range strs {

- sb.WriteString(str)
-}
- return sb.String()
-}
* Range iterates over elements in data structures

- First return value is usually element number

Basics

* Now you know how to do all of CS1 in go

* More Go next time. Assignment next.

Assignment

* Read chapters preface & 1-3 of the Learning
Go book.

- Those of you who were here for the first class
already read preface and chapter 1.

- A mix of easy reading and deeper reading. Plan
to take some time for it

- And play with it. Assignment next time to stretch
your gopher wings.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

