
Reflection



Admin
●

● For next week, please install gocv (openCV with go) 
– https://gocv.io/getting-started/

● After these slides – read chapter 14  in the book
– Or chapter 16 if you ended up getting the second edition a few 

weeks ago
● And reflect on it deeply

– Yup go is such a punny language

https://gocv.io/getting-started/


Reflection
● How many of you have done some work in reflection 

in programming?



Reflection
● How many of you have done some work in reflection 

in programming?
– How ‘bout if I call it ‘meta-programming’?
– Any more of you?



Assumption
● Based on my recent weeks with you all I’m going to 

assume that a couple of you have heard of it – mostly 
a long time ago.
– And the rest this will be new for. 



Reflection/Metaprogramming
● Reflection (also sometimes called ‘Meta-programming’)

– Run-time inspection of program data to find their type
– How does this happen in a strongly typed, statically typed 

programming language? 😱
● Whose feeling like a lucky volunteer?



Reflection/Metaprogramming
● Reflection (also sometimes called ‘Meta-programming’)

– Run-time inspection of program data to find their type
– How does this happen in a strongly typed, statically typed 

programming language? 😱
– How about bringing data down from an API
– Or building a generic data base insert generator

● Take arbitrary struct and build query to insert as database record



The empty interface
● Recall the empty interface 

– var mystery interface{}
– The empty interface matches every struct that has at least 

zero methods defined for it
– So it matches what?

● Whose feelin’ lucky?



The empty interface
● Recall the empty interface 

– var mystery interface{}
– The empty interface matches every struct that has at least 

zero methods defined for it
– So it matches what?

● EVERYTHING!!



Basic reflection in Go
● Need reflection package 

– From standard library
● reflect.TypeOf(<put your unknown here>)

– Returns a reflect.Type object
● <type object>.Kind() 

– Returns the kind of thing that type is



So lets try it
● Lets break out goland and try out the basics:

– Lets see what the difference is between type and kind
● Import the reflect package

func basicReflectionDemo(mystery interface{}){
mysteryType := reflect.TypeOf(mystery)
kind := mysteryType.Kind()
fmt.Println("The type of the parameter is: ", mysteryType)
fmt.Println("The kind of that parameter is: ", kind)

}
● Lets take a look at this function



Lets start small
● Lets start easy:

func main() {
var1:= 4
basicReflectionDemo(var1)
fmt.Println("==============================")

}

● Lets try this out



Lets start small
● Lets start easy:

func main() {
var1:= 4
basicReflectionDemo(var1)
fmt.Println("==============================")

}

● Lets try this out
– Hmmm the type and kind are the same



Now lets add a slice
● Lets try a slice as our next var

– How does this change things?
–



Now lets add a slice
● Lets try a slice as our next var

– How does this change things?
● Now lets define a small struct

– Create one
– And send it as the parameter to our basicReflectionDemo



Now lets add a slice
● Lets try a slice as our next var

– How does this change things?
● Now lets define a small struct

– Create one
– And send it as the parameter to our basicReflectionDemo

● Now we can see better the difference between type 
and kind



ValueOf
● One more important function from reflect

– reflect.ValueOf(<something here>)
● Returns a reflect.Value object
● That you can then use for reflection

● Code from the example project:
– Lets look
–



Some uses
● Some uses of reflection:
● How do we usually create a map in go?

– Lucky Volunteer?



Some uses
● Some uses of reflection:
● How do we usually create a map in go?

– Using make
– HashTable := make (map[string]int)
– But what if you don’t know what kind of numbers you have?
– SecondTable:= make(map[string]float)
–



Make map
● Now lets write a function that takes an interface 

param
– If it is of type int make the map from string to int
– Otherwise make the map from string to float



Some hints for later
● mapType1 := reflect.TypeOf(HashTable)
● mapType2 := reflect.TypeOf(SecondTable)
●     switch/if magic goes here
● actualMap = reflect.MakeMap(mapType1)



Reflect with structs
● When using reflection with structs

– We can find out how many fields it has 
– And what kind

● NumField()
– Use on a reflect.Value
– Returns the number of fields in struct 

● Field(i)
– Use of reflect.Value
– Where i is the field position

– Lets try it.



References:
https://golangbot.com/reflection/

https://www.geeksforgeeks.org/reflection
-in-golang/

Your Book: chapter 14
https://medium.com/capital-one-tech/lear
ning-to-use-go-reflection-822a0aed74b7

https://golang.org/pkg/reflect/
Rob Pike’s Take: 

https://blog.golang.org/laws-of-reflection

https://golangbot.com/reflection/
https://www.geeksforgeeks.org/reflection-in-golang/
https://www.geeksforgeeks.org/reflection-in-golang/
https://medium.com/capital-one-tech/learning-to-use-go-reflection-822a0aed74b7
https://medium.com/capital-one-tech/learning-to-use-go-reflection-822a0aed74b7
https://golang.org/pkg/reflect/
https://blog.golang.org/laws-of-reflection

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

