Reflection




Admin

* For next week, please install gocv (openCV with go)
- https://gocv.io/getting-started/
* After these slides - read chapter 14 in the book

- Or chapter 16 if you ended up getting the second edition a few
weeks ago

* And reflect on it deeply

- Yup go is such a punny language


https://gocv.io/getting-started/

Reflection

* How many of you have done some work in reflection
In programming?



Reflection

* How many of you have done some work in reflection
In programming?
- How ‘bout if I call it ‘meta-programming’?

- Any more of you?



Assumption

* Based on my recent weeks with you all I'm going to
assume that a couple of you have heard of it - mostly
a long time ago.

- And the rest this will be new for.



Reflection/Metaprogramming

* Reflection (also sometimes called ‘Meta-programming’)

- Run-time inspection of program data to find their type

- How does this happen in a strongly typed, statically typed
orogramming language?

* Whose feeling like a lucky volunteer?



Reflection/Metaprogramming

* Reflection (also sometimes called ‘Meta-programming’)

- Run-time inspection of program data to find their type

- How does this happen in a strongly typed, statically typed
orogramming language?

- How about bringing data down from an API

- Or building a generic data base insert generator

* Take arbitrary struct and build query to insert as database record



The empty interface

* Recall the empty interface

- var mystery interface{}

- The empty interface matches every struct that has at least
zero methods defined for it

- So it matches what?

* Whose feelin’ lucky?



The empty interface

* Recall the empty interface

- var mystery interface{}

- The empty interface matches every struct that has at least
zero methods defined for it

- So it matches what?
e EVERYTHING!



Basic reflection in Go

* Need reflection package

- From standard library

* reflect.TypeOf(<put your unknown here>)
- Returns a reflect.Type object

* <type object>.Kind()
- Returns the kind of thing that type is



So lets try it

* Lets break out goland and try out the basics:

- Lets see what the difference is between type and kind

* Import the reflect package

func basicReflectionDemo(mystery interface{}){
mysteryType := reflect.TypeOf(mystery)
kind := mysteryType.Kind()
fmt.PrintIn("The type of the parameter is: ", mysteryType)
fmt.Printin("The kind of that parameter is: ", kind)

}
* Lets take a look at this function



| ets start small

* Lets start easy:

func main() {
ri:.=4
basicReflectionDemo(var1)
fmt.PnntI ("::::::::::::::::::::::::::::::")
}

* Lets try this out



| ets start small

* Lets start easy:

func main() {
varl:=4
basicReflectionDemo(var1)
fmt.Println("==============================")

* Lets try this out

- Hmmm the type and kind are the same



Now lets add a slice

* Lets try a slice as our next var

- How does this change things?



Now lets add a slice

* Lets try a slice as our next var
- How does this change things?
* Now lets define a small struct

— Create one

- And send it as the parameter to our basicReflectionDemo



Now lets add a slice

* Lets try a slice as our next var
- How does this change things?
* Now lets define a small struct

— Create one

- And send it as the parameter to our basicReflectionDemo

* Now we can see better the difference between type
and kind



ValueOf

* One more important function from reflect

- reflect.ValueOf(<something here>)
* Returns a reflect.Value object

* That you can then use for reflection
* Code from the example project:

= JLets look

bubValua := reflect.valueOf(Job) //cheating here since I haven't covered reflection yet

//jobType := jobValue.Type()

for fieldNum := ©; fieldNum < jobValue.NumField(); fieldNum++ {
outputFile.SetCellValue("Comp490 Jobs", fmt.Sprintf("%s%d",

string(rune(65+fieldNum)), line),
jobValue.Field(fieldNum))



Some uses

* Some uses of reflection:

* How do we usually create a map in go?

- Lucky Volunteer?



Some uses

* Some uses of reflection:

* How do we usually create a map in go?
- Using make
- HashTable := make (map[string]int)
- But what if you don't know what kind of numbers you have?

- SecondTable:= make(mapl[stringlfloat)



* Now lets write a function that takes an interface
param

- Ifitis of type int make the map from string to int

- Otherwise make the map from string to float



Some hints for later

* mapType1l := reflect.TypeOf(HashTable)
* mapType2 := reflect.TypeOf(SecondTable)
* switch/if magic goes here

* actualMap = reflect. MakeMap(mapType1)



Reflect with structs

* When using reflection with structs

- We can find out how many fields it has

- And what kind
* NumpField()

- Use on a reflect.Value

- Returns the number of fields in struct
* Field(i)

- Use of reflect.Value

- Where i is the field position

- Letstry it.



References:
https://golangbot.com/reflection/

https://www.geeksforgeeks.org/reflection
-in-golang/

Your Book: chapter 14

https://medium.com/capital-one-tech/lear
ning-to-use-go-reflection-822a0aed74b7

https://golang.org/pkg/reflect/
Rob Pike’s Take:

https://blog.golang.org/laws-of-reflection


https://golangbot.com/reflection/
https://www.geeksforgeeks.org/reflection-in-golang/
https://www.geeksforgeeks.org/reflection-in-golang/
https://medium.com/capital-one-tech/learning-to-use-go-reflection-822a0aed74b7
https://medium.com/capital-one-tech/learning-to-use-go-reflection-822a0aed74b7
https://golang.org/pkg/reflect/
https://blog.golang.org/laws-of-reflection

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

