
Software Dev
It works on my machine and how to develop
more professionally

Admin
● Quizzes /assignment discussion
● Assignment here?

● Or next class?

Works on my machine
● Discuss the history

– For a while I got a reputation for this
– So I dropped it
– But this semester I’m hearing more and more works on my

machine.
– You don’t get downloaded and installed with the software

From my door

Works on my machine
● What we are doing here is (perhaps unconsciously)

blaming the users
– Yes I say this in jest (users are the worst thing that can happen

to your software)
– But in real life our software should take users into account

Works on My machine
● As per articles, several reasons that it doesn’t work for your

customers
– Bad user interface

● customer doesn’t know how to use the program
– Broken build/untested/buggy

● Someone someone snuck a bug into production code.
– Environmental problems

● Missing/confused dependencies/’dll hell’

– Lets take a look at these one at a time

Bad User interface
● The most infamous example in the year 2019 of bad user

interface?
– Including an initial corporate response that was functional

equivalent to blaming the user?

Bad User interface
● The most infamous example in the last year of bad user

interface?
– Including an initial corporate response that was functional

equivalent to blaming the user?
– Boeing 737 MAX

● “A long-standing procedure taught to pilots could have halted the dive,
according to the regulator and the manufacturer. The FAA ordered airlines
to add an explanation into flight manuals,”

- Boeing response to the Lion Air crash Oct 2018
– When did Boeing add information about the AI system that caused

the crash to the manuals and other information given to pilots?

Bad User interface
● The most infamous example in the last year of bad user

interface?
– Including an initial corporate response that was functional

equivalent to blaming the user?
– Boeing 737 MAX

– When did Boeing add information about the AI system that caused
the crash to the manuals and other information given to pilots?

● A week after the first crash
● https://www.extremetech.com/extreme/280521-boeing-737-crash-caused-b

y-new-safety-system-pilots-werent-told-existed
●

https://www.extremetech.com/extreme/280521-boeing-737-crash-caused-by-new-safety-system-pilots-werent-told-existed
https://www.extremetech.com/extreme/280521-boeing-737-crash-caused-by-new-safety-system-pilots-werent-told-existed

Lesson
● If your interface kills people it isn’t ‘operator error’

– We appear to finally be leaving this era
● Three Mile Island story

– The beginning of the ‘operator error’ approach
● As far as I know

Bad User Interface Example 1
● One of our current administrative software:

– How do you supposed we select an application?
– See next slide

Bad User Interface Example 1
● One of our current administrative software:

– How do you supposed we select an application?
– See previous slide
– Discuss
–

Bad User Interface example 2
● Banner purchasing

– ‘cheap’ banner vs full-banner (order of magnitude price
difference)

– Show page selections from the 2021 banner “user guide”

Bad User Interface 3
● According to industry publication The Inquirer

– Not Enquirer you wags,
– What is the 2nd worst UI of all time?

Bad User Interface 3
● According to industry publication The Inquirer

– Not Enquirer you wags,
– What is the 2nd worst UI of all time?
– https://www.theinquirer.net/inquirer/feature/2459940/top-

10-worst-user-interfaces/page/9

https://www.theinquirer.net/inquirer/feature/2459940/top-10-worst-user-interfaces/page/9
https://www.theinquirer.net/inquirer/feature/2459940/top-10-worst-user-interfaces/page/9

They also call out this

Final Example
● Remember the ddos attack from a few years back

that took down the east coast internet?
● October 21 2016

● https://www.wired.com/2016/10/internet-outage-d
dos-dns-dyn/

● Why? What happened?

https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/
https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/

Final Example
● Remember the ddos attack from a few years back that took

down the east coast internet?
● October 21 2016

● https://www.wired.com/2016/10/internet-outage-ddos-d
ns-dyn/

● IoT devices taken over and a good chunk of the East Coast
Internet went offline.

● why/how were these IoT devices taken over and added to a
botnet?

● Hint – what do these devices tell you to do first?

https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/
https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/

Final Example
● Remember the ddos attack from a few years back that took

down the east coast internet?
● October 21 2016

● https://www.wired.com/2016/10/internet-outage-ddos-d
ns-dyn/

● IoT devices taken over and a good chunk of the East Coast
Internet went offline.

● why/how were these IoT devices taken over and added to a
botnet?

https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/
https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/

Final Example
● Remember the ddos attack from a few years back

that took down the east coast internet?
● IoT devices taken over and a good chunk of the East

Coast Internet went offline.
● why/how were these IoT devices taken over and

added to a botnet?
● Users never changed the default password
●

Final Example
● IoT devices taken over and a good chunk of the East

Coast Internet went offline.
● why/how were these IoT devices taken over and

added to a botnet?
● Users never changed the default password
● How would you as developers fix this issue with

users?

Final Example
● IoT devices taken over and a good chunk of the East

Coast Internet went offline.
● why/how were these IoT devices taken over and added

to a botnet?
● Users never changed the default password
● How would you as developers fix this issue with users?

– Make device not work till the default password is changed
● Good first start.

Usability
● Not all of you will be working on user facing tech

– But all of you should be at least passingly familiar with first
principles.

– Dr. Liang covered several of these right?
– At least accessibility?
– Like?

Usability
● Not all of you will be working on user facing tech

– Dr. Liang covered several of these right?
– Accessibility?

● Color schemes that work even for color-blind individuals
● How common is color-blindness?
● ref

– https://medium.com/@courtneyjordan/designing-for-all-users-why-
you-should-care-about-color-blindness-beabd61943eb

Usability
● How common is color-blindness?

● More common in men than in women by factor of about 16

Usability
● Not all of you will be working on user facing tech

– Accessibility?
● Legal blindness.

– Can your app be read by a text reader?
● Deafness

– Does your app require some auditory cues as the only way to
function?

● More?

Affordances
● 30+ years ago Don Norman wrote The Design of Everyday

Things
– Became the book for design in both engineering and CS design
– 2013 revised edition is #1 and #5 in amazon’s best seller list for

the retail industry
● #22 and #30 in the entire industry best seller list.

Affordances
● 30+ years ago Don Norman wrote The Design of Everyday

Things
– Perhaps the most important part of the book was the bring

cognitive/perceptual psychologist James J. Gibson’s concept of
affordances to the area of design.

Affordances
● Affordances:

– Originally: perceptual inputs which took no cognition to
understand what they were

– In the Norman sense
● An understanding of a ‘thing’ and its uses which is almost

instinctual
● The perceived properties of how a thing is used

– Eg knobs are for turning.

Affordances
● Give me more examples of affordances in the real

world

Affordances
● Give me more examples of affordances in the real world

–
– for example if one of

these was passed around
 when you were 12 what
 did you want to do to it?

Affordances
● What do each of these afford?

– Light switch?
–

–

Affordances
● What do each of these afford?

– Light switch?
– Electric outlet?
–

–

Affordances
● What do each of these afford?

– Light switch?
– Electric outlet?
– Glass panel?
– Plywood panel?

● Discuss Norman’s experience with these last two (and DMF)
–

–

Affordances
● What do each of these afford?

– Light switch?
– Electric outlet?
– Glass panel?
– Plywood panel?

● Discuss Norman’s experience with these last two (and DMF)
– Drywall panel example
–

Affordances
● What do each of these afford?

– Light switch?
– Electric outlet?
– Glass panel?
– Plywood panel?

● Discuss Norman’s experience with these last two (and DMF)
– Button?
–

Affordances
● What do each of these afford?

– Light switch?
– Electric outlet?
– Glass panel?
– Plywood panel?

● Discuss Norman’s experience with these last two (and DMF)
– Button?
– Underlined blue text?
–

Affordances
● What do each of these afford?

– Light switch?
– Electric outlet?
– Glass panel?
– Plywood panel?

● Discuss Norman’s experience with these last two (and DMF)
– Button?
– Underlined blue text?
– Flat surface about 1.5 to 2 feet above the ground?

Affordances
● Use Affordances to make your UI easier
● Don’t subvert affordances without very careful

thought.
● Credit: Vox media

article on
Don Norman

Mapping
● Mapping is a second seminal concept codified in the

Design of Everyday things
– Mapping is the notion that the connection from inputs to

functionality should be easy to understand

Bad Mapping
● Which control controls which burner in this stove?

image credit wikipedia

Natural mapping
● Which control goes with which burner here?

again wikipedia credit

Think about mapping
● When designing think about mapping

– And feedback, when something happens/is happening
make it clear to the user

Next: testing always
● Once your program is usable now we need to make sure

your tests are always run before any commits of the
software

● And once the tests pass and code is committed –
immediately deploy it to production

● Continuous Integration (CI)/Continuous Delivery (CD)

CI: Intro
● Continuous Integration:

– Basic idea: every time you commit/check in your code a script runs
to do some work

– Typical work:
● Run automated tests
● Run linters (pylint sonarlint for java etc)
● Run formatters (black, rustfmt, gofmt etc)
● For compiled languages, actually compile

– If any of these fail then the check in/commit fails.
– Frequently build software to shorten the feedback cycle

Why CI
● Don’t break the build

– Assuming a Git-like model
– If Developer A merges changes that break the build

● No one else can do work

Image credit: Realpython.com

Lots of CI choices
● Today there are a number of options for CI

– Jenkins: granddaddy of them all
● New version out recently
● Originally needed to run on-prem server

– TravisCI
● Gained traction because of github integration

– CircleCI
● Runs as a service – hosted on their servers

– GitLab
● Gitlab launched as a github competitor
● Added build in CI as a competitive option

– And more (Atlassian etc)

Gitlab CI
● I’m going to use Gitlab CI for most of my examples

– Available on their free tier
– Another cloud hosted git repository like github which we are

already using.
– Gitlab is a github competitor in

the cloud git repository space
– Distinguishing itself with this sort

of offering

GitLab: new project
● A newly created project in gitlab:
● Lets look at what is

different than github
● What follows is an

edited diary of my
learning so you can too

CI Pipelines
● Central to most CI workflows is the notion of a CI

pipeline
● Multiple steps possible in the pipeline

– Each step can have multiple parallel jobs running
– Each step can use the output from earlier steps
– But each job in a step can’t assume output from its peers

Pipelines
Example Here:

image credit:
https://about.gitlab.com/2018/01/22/a-beginners-guide-to-continuous-integration/

What sort of pipelines
● Based on our discussions so far

– Or your own experience
– What sorts of things should CI do for us?

What sort of pipelines
● Based on our discussions so far

– Or your own experience
– What sorts of things should CI do for us?
– Likely answers include

● Running a linter (or formatter)
● Compiling (or running code through interpreter)
● Running automated tests
● Sending changes to deployment

Setting up CI/CD
● Setting up GitLab CI/CD uses a

yaml file
● To right is simple example from

Zuri Hunter’s medium writeup

image: node:10.5.0

stages:
 - build
 - test
 - deploy

before_script:
 - npm install

build-min-code:
 stage: build
 script:
 - npm install
 - npm run minifier

run-unit-test:
 stage: test
 script:
 - npm run test

deploy-staging:
 stage: deploy
 script:
 - npm run deploy-stage
 only:
 - develop

A Deeper look
● So lets continue with our example

– I have the floodfill from the makeup project
– I need to work on that

● So I cloned the project locally using git

● Then I opened it in pycharm
– Created a test folder and a first test
– I used pycharm’s vcs integration to add it to git and commit
– Then I pushed the changes to the gitlab project

Like this
● Here was my update:

● Caveat, disclaimer, best practices, merge/pull requests, fast
and beginner, etc.

● Ok – now we have a test, furthermore, maybe I want to run a
linter (flake8 is what I’ll use here)

Setup CI on Gitlab
● So lets setup CI

directly on Gitlab

Creates the gitlab-ci.yml
● Using the online ide

Templates
● Gitlab has templates for many languages

Example
● So I used the

python template
and removed
the packaging stuff

Official language image. Different tagged releases at:
https://hub.docker.com/r/library/python/tags/
image: python:latest

Change pip's cache directory to be inside the project directory
since we can only cache local items.
variables:
 PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache/pip"

Pip's cache doesn't store the python packages
https://pip.pypa.io/en/stable/reference/pip_install/#caching
If you want to also cache installed packages, you have to
install them in a virtualenv and cache it as well.
cache:
 paths:
 .cache/pip
 venv/

before_script:
 python -V # Print out python version for debugging
 pip install virtualenv
 virtualenv venv
 source venv/bin/activate

test:
 script:
 python setup.py test
 pip install tox flake8 # you can also use tox
 tox -e py36,flake8

Image
● Image specifies a docker image

– Anything on docker hub should work (I only tried some
python images)

– https://hub.docker.com/
–

https://hub.docker.com/

Before_script
● before_script:

– This section runs before each job
– In our case setting up a python virtual env

● Discuss if needed

Test:
● Test:

– Section is our only current job
– The script had more
– If any item here fails, the whole pipeline fails.

● Can have an arbitrary number of jobs

At this point I went home
● And when I got there

I had mail

Simplify
● So I simplified

the Ci/CD
pipeline

image: python:latest

Change pip's cache directory to be inside the project directory
#since we can only cache local items.
variables:
 PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache/pip"

Pip's cache doesn't store the python packages
If you want to also cache the installed packages, you have to
#install them in a virtualenv and cache it as well.
cache:
 paths:
 - .cache/pip
 - venv/

before_script:
 - python -V # Print out python version for debugging
 - pip install virtualenv
 - virtualenv venv
 - source venv/bin/activate

test:
 script:
 #- python setup.py test
 - pip install tox flake8 pytest # you can also use tox
 #- tox -e py36,flake8 # look at this more enterprise way of later
 - flake8 flood_fill.py
 - pytest Tests/test_flood_fill.py

Code not following style
● So my CI fails the build because I’m not following the style

guide – again let the computer check it:

Dot dot dot
● I did a bit of trial and error learning the ins and outs of

these tools on the command line that I’ve used from
pycharm locally
– I edited .gitlab-ci.yml to run flake8 –max-line-length=100
– And turned the pytest line to python -m pytest

● pytest Tests/test_flood_fill.py
● Became
● python -m pytest
● Reason: when run as python -m pytest then current working directory is

root of tests (for import statements) also pytest will look in directories
named Test for files for the sort test_something.py

Style guides
● So the code I extended wasn’t following the style

– And I introduced two style issues myself
– Pycharm autofixed about 80% of it
– I changed all the

● if expression == False:
● To
● if not expression:

– And fixed my doc string (’ “)→
– And checked the code back in.

Check in – pipelines running
● Check in – running CI

Click here

And Success!
● Finally I don’t have email from gitlab

Any questions
● Anyone not quite there on your version of the

project?
● Please help your neighbors and I’ll be around

Now lets do real work
● We have our project in the basics of shape

– But we only have one happy path test.
– Lets do a more complete test
– Uncomment the commented test in the test_flood_fill file. It

tries to load a non-existent file. That should do something
sane, like return an empty list – not throw exception

– Commit to gitlab and the tests will automatically run and
show the error

The failed test
As those of you who did the makeup project discovered, the parse _map
function isn’t very robust

TDD after all
● Now let’s do us some test driven development

– We have a failing test, how do we make it pass?

How should we fix the issue
● ? students suggest and we try it

My solution
● My solution below, passes tests
def parse_map(file_name: str):
 """
 this function might have problems, but testing will find that.
 """
 map_representation = []
 try:
 map_file = open(file_name, encoding='UTF-8') # the encoding-'UTF-8'
needed for windows
 lines = map_file.readlines()
 except (FileNotFoundError, PermissionError):
 return map_representation
 for line in lines:
 line = list(map(int, line.split(',')))
 map_representation.append(line)
 return map_representation

And commit works
● After the commit:

Click here and choose test

Yes – we fixed the error!
● Now our pipeline is working like it should
●

Now lets continue
● I wrote that function to have an issue for the makeup

assignment
● Lets go from here. Lets choose a function, write a test

for it, commit and git push and let our CI pipeline run
the tests automatically

● If the test fails we’ll edit the real code
● Huzzah!

References
● Some references I used if you want/need more

– https://medium.com/devopslinks/beginner-friendly-introduction-t
o-gitlab-ci-cd-1c80ee5ba0ae

– https://realpython.com/python-continuous-integration/
– https://medium.com/metro-platform/continuous-integration-for-p

ython-3-in-gitlab-e1b4446be76b
– https://docs.gitlab.com/ee/ci/yaml/#stages
– https://www.tutorialspoint.com/gitlab/gitlab_ci_cd.htm
– http://www.codingtricks.biz/ci-cd-python-project-with-gitlab/

https://medium.com/devopslinks/beginner-friendly-introduction-to-gitlab-ci-cd-1c80ee5ba0ae
https://medium.com/devopslinks/beginner-friendly-introduction-to-gitlab-ci-cd-1c80ee5ba0ae
https://realpython.com/python-continuous-integration/
https://medium.com/metro-platform/continuous-integration-for-python-3-in-gitlab-e1b4446be76b
https://medium.com/metro-platform/continuous-integration-for-python-3-in-gitlab-e1b4446be76b
https://docs.gitlab.com/ee/ci/yaml/#stages
https://www.tutorialspoint.com/gitlab/gitlab_ci_cd.htm

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

