
Software Dev
It works on my machine and how to develop 
more professionally



Admin
● Quizzes /assignment discussion
● Assignment here?

● Or next class?



Works on my machine
● Discuss the history

– For a while I got a reputation for this
– So I dropped it
– But this semester I’m hearing more and more works on my 

machine.
– You don’t get downloaded and installed with the software



From my door



Works on my machine
● What we are doing here is (perhaps unconsciously) 

blaming the users
– Yes I say this in jest (users are the worst thing that can happen 

to your software)
– But in real life our software should take users into account 



Works on My machine
●  As per articles, several reasons that it doesn’t work for your 

customers
– Bad user interface 

● customer doesn’t know how to use the program
– Broken build/untested/buggy

● Someone someone snuck a bug into production code.
– Environmental problems

● Missing/confused dependencies/’dll hell’

– Lets take a look at these one at a time 



Bad User interface
● The most infamous example in the year 2019 of bad user 

interface?
– Including an initial corporate response that was functional 

equivalent to blaming the user?



Bad User interface
● The most infamous example in the last year of bad user 

interface?
– Including an initial corporate response that was functional 

equivalent to blaming the user?
– Boeing 737 MAX

● “A long-standing procedure taught to pilots could have halted the dive, 
according to the regulator and the manufacturer. The FAA ordered airlines 
to add an explanation into flight manuals,”

- Boeing response to the Lion Air crash Oct 2018
– When did Boeing add information about the AI system that caused 

the crash to the manuals and other information given to pilots? 



Bad User interface
● The most infamous example in the last year of bad user 

interface?
– Including an initial corporate response that was functional 

equivalent to blaming the user?
– Boeing 737 MAX

– When did Boeing add information about the AI system that caused 
the crash to the manuals and other information given to pilots? 

● A week after the first crash
● https://www.extremetech.com/extreme/280521-boeing-737-crash-caused-b

y-new-safety-system-pilots-werent-told-existed
●

https://www.extremetech.com/extreme/280521-boeing-737-crash-caused-by-new-safety-system-pilots-werent-told-existed
https://www.extremetech.com/extreme/280521-boeing-737-crash-caused-by-new-safety-system-pilots-werent-told-existed


Lesson
● If your interface kills people it isn’t ‘operator error’

– We appear to finally be leaving this era
● Three Mile Island story

– The beginning of the ‘operator error’ approach
● As far as I know



Bad User Interface Example 1 
● One of our current administrative software:

– How do you supposed we select an application?
– See next slide





Bad User Interface Example 1 
● One of our current administrative software:

– How do you supposed we select an application?
– See previous slide
– Discuss
–



Bad User Interface example 2
● Banner purchasing 

– ‘cheap’ banner vs full-banner (order of magnitude price 
difference)

– Show page selections from the 2021 banner “user guide”



Bad User Interface 3
● According to industry publication The Inquirer

– Not Enquirer you wags,
– What is the 2nd worst UI of all time? 



Bad User Interface 3
● According to industry publication The Inquirer

– Not Enquirer you wags,
– What is the 2nd worst UI of all time?
– https://www.theinquirer.net/inquirer/feature/2459940/top-

10-worst-user-interfaces/page/9

https://www.theinquirer.net/inquirer/feature/2459940/top-10-worst-user-interfaces/page/9
https://www.theinquirer.net/inquirer/feature/2459940/top-10-worst-user-interfaces/page/9


They also call out this



Final Example
● Remember the ddos attack from a few years back 

that took down the east coast internet?
● October 21 2016

● https://www.wired.com/2016/10/internet-outage-d
dos-dns-dyn/

●  Why? What happened?

https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/
https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/


Final Example
● Remember the ddos attack from a few years back that took 

down the east coast internet?
● October 21 2016

● https://www.wired.com/2016/10/internet-outage-ddos-d
ns-dyn/

● IoT devices taken over and  a good chunk of the East Coast 
Internet went offline.

● why/how were these IoT devices taken over and added to a 
botnet?

● Hint – what do these devices tell you to do first?

https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/
https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/


Final Example
● Remember the ddos attack from a few years back that took 

down the east coast internet?
● October 21 2016

● https://www.wired.com/2016/10/internet-outage-ddos-d
ns-dyn/

● IoT devices taken over and  a good chunk of the East Coast 
Internet went offline.

● why/how were these IoT devices taken over and added to a 
botnet?

https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/
https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/


Final Example
● Remember the ddos attack from a few years back 

that took down the east coast internet?
● IoT devices taken over and  a good chunk of the East 

Coast Internet went offline.
● why/how were these IoT devices taken over and 

added to a botnet?
● Users never changed the default password
●



Final Example
● IoT devices taken over and  a good chunk of the East 

Coast Internet went offline.
● why/how were these IoT devices taken over and 

added to a botnet?
● Users never changed the default password
● How would you as developers fix this issue with 

users?



Final Example
● IoT devices taken over and  a good chunk of the East 

Coast Internet went offline.
● why/how were these IoT devices taken over and added 

to a botnet?
● Users never changed the default password
● How would you as developers fix this issue with users?

– Make device not work till the default password is changed
● Good first start. 



Usability
● Not all of you will be working on user facing tech

– But all of you should be at least passingly familiar with first 
principles.

– Dr. Liang covered several of these right?
– At least accessibility?
– Like?



Usability
● Not all of you will be working on user facing tech

– Dr. Liang covered several of these right?
– Accessibility?

● Color schemes that work even for color-blind individuals
● How common is color-blindness?
● ref

– https://medium.com/@courtneyjordan/designing-for-all-users-why-
you-should-care-about-color-blindness-beabd61943eb



Usability
● How common is color-blindness?

● More common in men than in women by factor of about 16



Usability
● Not all of you will be working on user facing tech

– Accessibility?
● Legal blindness.

– Can your app be read by a text reader?
● Deafness

– Does your app require some auditory cues as the only way to 
function?

● More?



Affordances
● 30+ years ago Don Norman wrote The Design of Everyday 

Things
– Became the book for design in both engineering and CS design
– 2013 revised edition is #1 and #5 in amazon’s best seller list for 

the retail industry
● #22 and #30 in the entire industry best seller list. 



Affordances
● 30+ years ago Don Norman wrote The Design of Everyday 

Things
– Perhaps the most important part of the book was the bring 

cognitive/perceptual psychologist James J. Gibson’s concept of 
affordances to the area of design.



Affordances
● Affordances:

– Originally: perceptual inputs which took no cognition to 
understand what they were

– In the Norman sense
● An understanding of a ‘thing’ and its uses which is almost 

instinctual
● The perceived properties of how a thing is used

– Eg knobs are for turning. 



Affordances
● Give me more examples of affordances in the real 

world



Affordances
● Give me more examples of affordances in the real world 

– 
– for example if one of 

these was passed around
 when you were 12 what
 did you want to do to it?



Affordances
● What do each of these afford?

– Light switch?
–

–



Affordances
● What do each of these afford?

– Light switch?
– Electric outlet?
–

–



Affordances
● What do each of these afford?

– Light switch?
– Electric outlet?
– Glass panel?
– Plywood panel?

● Discuss Norman’s experience with these last two (and DMF)
–

–



Affordances
● What do each of these afford?

– Light switch?
– Electric outlet?
– Glass panel?
– Plywood panel?

● Discuss Norman’s experience with these last two (and DMF)
– Drywall panel example
–



Affordances
● What do each of these afford?

– Light switch?
– Electric outlet?
– Glass panel?
– Plywood panel?

● Discuss Norman’s experience with these last two (and DMF)
– Button?
–



Affordances
● What do each of these afford?

– Light switch?
– Electric outlet?
– Glass panel?
– Plywood panel?

● Discuss Norman’s experience with these last two (and DMF)
– Button?
– Underlined blue text?
–



Affordances
● What do each of these afford?

– Light switch?
– Electric outlet?
– Glass panel?
– Plywood panel?

● Discuss Norman’s experience with these last two (and DMF)
– Button?
– Underlined blue text?
– Flat surface about 1.5 to 2 feet above the ground?



Affordances
● Use Affordances to make your UI easier
● Don’t subvert affordances without very careful 

thought.
● Credit: Vox media

article on 
Don Norman 



Mapping
● Mapping is a second seminal concept codified in the 

Design of Everyday things
– Mapping is the notion that the connection from inputs to 

functionality should be easy to understand



Bad Mapping
● Which control controls which burner in this stove?

image credit wikipedia



Natural mapping
● Which control goes with which burner here?

again wikipedia credit



Think about mapping 
● When designing think about mapping

– And feedback, when something happens/is happening 
make it clear to the user 



Next: testing always
● Once your program is usable now we need to make sure 

your tests are always run before any commits of the 
software 

● And once the tests pass and code is committed – 
immediately deploy it to production

● Continuous Integration (CI)/Continuous Delivery (CD) 



CI: Intro
● Continuous Integration:

– Basic idea: every time you commit/check in your code a script runs 
to do some work

– Typical work:
● Run automated tests
● Run linters (pylint sonarlint for java etc) 
● Run formatters (black, rustfmt, gofmt etc)
● For compiled languages, actually compile

– If any of these fail then the check in/commit fails.
– Frequently build software to shorten the feedback cycle 



Why CI
● Don’t break the build

– Assuming a Git-like model
– If Developer A merges changes that break the build

● No one else can do work

Image credit: Realpython.com



Lots of CI choices
● Today there are a number of options for CI

– Jenkins: granddaddy of them all
● New version out recently
● Originally needed to run on-prem server

– TravisCI
● Gained traction because of github integration

– CircleCI
● Runs as a service – hosted on their servers

– GitLab
● Gitlab launched as a github competitor
● Added build in CI as a competitive option

– And more (Atlassian etc)



Gitlab CI
● I’m going to use Gitlab CI for most of my examples

– Available on their free tier
– Another cloud hosted git repository like github which we are 

already using.
– Gitlab is a github competitor in

the cloud git repository space
– Distinguishing itself with this sort

of offering



GitLab: new project
● A newly created project in gitlab:
● Lets look at what is 

different than github
● What follows is an 

edited diary of my 
learning so you can too



CI Pipelines
● Central to most CI workflows is the notion of a CI 

pipeline
● Multiple steps possible in the pipeline

– Each step can have multiple parallel jobs running
– Each step can use the output from earlier steps
– But each job in a step can’t assume output from its peers



Pipelines
Example Here:

image credit: 
https://about.gitlab.com/2018/01/22/a-beginners-guide-to-continuous-integration/ 



What sort of pipelines
● Based on our discussions so far

– Or your own experience
– What sorts of things should CI do for us?



What sort of pipelines
● Based on our discussions so far

– Or your own experience
– What sorts of things should CI do for us?
– Likely answers include

● Running a linter (or formatter)
● Compiling (or running code through interpreter)
● Running automated tests
● Sending changes to deployment



Setting up CI/CD 
● Setting up GitLab CI/CD uses a 

yaml file
● To right is simple example from

Zuri Hunter’s medium writeup

image: node:10.5.0

stages:
  - build
  - test
  - deploy

before_script:
  - npm install

build-min-code:
  stage: build
  script:
    - npm install
    - npm run minifier

run-unit-test:
  stage: test
  script:
    - npm run test

deploy-staging:
  stage: deploy
  script:
    - npm run deploy-stage
  only:
    - develop



A Deeper look
● So lets continue with our example

– I have the floodfill from the makeup project
– I need to work on that

● So I cloned the project locally using git

● Then I opened it in pycharm
– Created a test folder and a first test
– I used pycharm’s vcs integration to add it to git and commit
– Then I pushed the changes to the gitlab project 



Like this
● Here was my update:

● Caveat, disclaimer, best practices, merge/pull requests, fast 
and beginner, etc.

● Ok – now we have a test, furthermore, maybe I want to run a 
linter (flake8 is what I’ll use here)



Setup CI on Gitlab
● So lets setup CI 

directly on Gitlab



Creates the gitlab-ci.yml
● Using the online ide



Templates
● Gitlab has templates for many languages



Example
● So I used the 

python template 
and removed 
the packaging stuff

# Official language image. Different tagged releases at:
# https://hub.docker.com/r/library/python/tags/
image: python:latest

# Change pip's cache directory to be inside the project directory 
# since we can only cache local items.
variables:
  PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache/pip"

# Pip's cache doesn't store the python packages
# https://pip.pypa.io/en/stable/reference/pip_install/#caching
# If you want to also cache installed packages, you have to 
# install them in a virtualenv and cache it as well.
cache:
  paths:
     .cache/pip
     venv/

before_script:
   python -V               # Print out python version for debugging
   pip install virtualenv
   virtualenv venv
   source venv/bin/activate

test:
  script:
   python setup.py test
   pip install tox flake8  # you can also use tox
   tox -e py36,flake8



Image
● Image specifies a docker image

– Anything on docker hub should work (I only tried some 
python images)

– https://hub.docker.com/
–

https://hub.docker.com/


Before_script
● before_script: 

– This section runs before each job
– In our case setting up a python virtual env

● Discuss if needed



Test:
● Test:

– Section is our only current job
– The script had more
– If any item here fails, the whole pipeline fails.

● Can have an arbitrary number of jobs



At this point I went home
● And when I got there 

I had mail



Simplify
● So I simplified 

the Ci/CD 
pipeline 

image: python:latest

# Change pip's cache directory to be inside the project directory 
#since we can only cache local items.
variables:
  PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache/pip"

# Pip's cache doesn't store the python packages
# If you want to also cache the installed packages, you have to 
#install them in a virtualenv and cache it as well.
cache:
  paths:
    - .cache/pip
    - venv/

before_script:
  - python -V               # Print out python version for debugging
  - pip install virtualenv
  - virtualenv venv
  - source venv/bin/activate

test:
  script:
  #- python setup.py test
  - pip install tox flake8 pytest # you can also use tox
  #- tox -e py36,flake8 # look at this more enterprise way of  later
  - flake8 flood_fill.py
  - pytest Tests/test_flood_fill.py



Code not following style
● So my CI fails the build because I’m not following the style 

guide – again let the computer check it:



Dot dot dot
● I did a bit of trial and error learning the ins and outs of 

these tools on the command line that I’ve used from 
pycharm locally
– I edited .gitlab-ci.yml to run flake8 –max-line-length=100
– And turned the pytest line to python -m pytest 

● pytest Tests/test_flood_fill.py
● Became
● python -m pytest 
● Reason: when run as python -m pytest then current working directory is 

root of tests (for import statements) also pytest will look in directories 
named Test for files for the sort test_something.py



Style guides
● So the code I extended wasn’t following the style

– And I introduced two style issues myself
– Pycharm autofixed about 80% of it
– I changed all the 

● if expression == False:
● To
● if not expression:

– And fixed my doc string (’  “)→
– And checked the code back in.



Check in – pipelines running
● Check in – running CI

Click here



And Success!
● Finally I don’t have email from gitlab



Any questions
● Anyone not quite there on your version of the 

project?
● Please help your neighbors and I’ll be around



Now lets do real work
● We have our project in the basics of shape

– But we only have one happy path test.
– Lets do a more complete test
– Uncomment the commented test in the test_flood_fill file. It 

tries to load a non-existent file. That should do something 
sane, like return an empty list – not throw exception

– Commit to gitlab and the tests will automatically run and 
show the error 



The failed test
As those of you who did the makeup project discovered, the parse _map 
function isn’t very robust



TDD after all
● Now let’s do us some test driven development

– We have a failing test, how do we make it pass?



How should we fix the issue
● ? students suggest and we try it



My solution
● My solution below, passes tests
def parse_map(file_name: str):
    """
    this function might have problems, but testing will find that.
    """
    map_representation = []
    try:
        map_file = open(file_name, encoding='UTF-8')  # the encoding-'UTF-8' 
needed for windows
        lines = map_file.readlines()
    except (FileNotFoundError, PermissionError):
        return map_representation
    for line in lines:
        line = list(map(int, line.split(',')))
        map_representation.append(line)
    return map_representation



And commit works
● After the commit:

Click here and choose test



Yes – we fixed the error!
● Now our pipeline is working like it should
●



Now lets continue
● I wrote that function to have an issue for the makeup 

assignment
● Lets go from here. Lets choose a function, write a test 

for it, commit and git push and let our CI pipeline run 
the tests automatically

● If the test fails we’ll edit the real code
● Huzzah! 



References
● Some references I used if you want/need more

– https://medium.com/devopslinks/beginner-friendly-introduction-t
o-gitlab-ci-cd-1c80ee5ba0ae

– https://realpython.com/python-continuous-integration/
– https://medium.com/metro-platform/continuous-integration-for-p

ython-3-in-gitlab-e1b4446be76b
– https://docs.gitlab.com/ee/ci/yaml/#stages
– https://www.tutorialspoint.com/gitlab/gitlab_ci_cd.htm
– http://www.codingtricks.biz/ci-cd-python-project-with-gitlab/

https://medium.com/devopslinks/beginner-friendly-introduction-to-gitlab-ci-cd-1c80ee5ba0ae
https://medium.com/devopslinks/beginner-friendly-introduction-to-gitlab-ci-cd-1c80ee5ba0ae
https://realpython.com/python-continuous-integration/
https://medium.com/metro-platform/continuous-integration-for-python-3-in-gitlab-e1b4446be76b
https://medium.com/metro-platform/continuous-integration-for-python-3-in-gitlab-e1b4446be76b
https://docs.gitlab.com/ee/ci/yaml/#stages
https://www.tutorialspoint.com/gitlab/gitlab_ci_cd.htm
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