Development Seminar

Working with Data

Admin

e News
e Discussions?
e References for these slides

- https://medium.com/analytics-vidhya/programming-with-databases-in-p
ython-using-sqlite-4cecbef51ab9

Let's talk about the soft skills podcast
- Sticky notes and startups

https://medium.com/analytics-vidhya/programming-with-databases-in-python-using-sqlite-4cecbef51ab9
https://medium.com/analytics-vidhya/programming-with-databases-in-python-using-sqlite-4cecbef51ab9

Disclaimer

 As | said on day 1.

- We need to expose all students to some basic data handling in a
required class.

- In this slideset I'm going to try to summarize comp405 in a week or
less.

* That said, if you have questions ask them.
- Part of what we try to do in this class is to give you a taste of
something that every graduate should have

— Other nearby ABET accredited CS program’s CS load compared to
ours.

Databases

* Historically Databases come in lots of difference types

- Hierarchical databases

- Network databases

- Relational databases

- Object-oriented databases
- Graph databases

- ER model databases

- Document databases

Databases

* Realistically, today most people care about 2 of those
- Relational Databases (SQL)
- Document Databases (NoSQL)

- Note on Pronouncing these:
* Lots of disucussion:

- https://v\IANW.khanacademy.org/computing/computer-programming/sqI/sql-basics/v/s-q-l-o
r-seque

- https://database.guide/is-it-pronounced-s-g-l-or-sequel/
* sqglServer vs MySQL

* In general | find Americans more likely to use the old IBM “Sequel”
pronunciation and the rest of the world to use S-Q-L

* |learned SQL from a recent immigrant so | often switch back and forth

https://www.khanacademy.org/computing/computer-programming/sql/sql-basics/v/s-q-l-or-sequel
https://www.khanacademy.org/computing/computer-programming/sql/sql-basics/v/s-q-l-or-sequel
https://database.guide/is-it-pronounced-s-q-l-or-sequel/

Relational Databases

 Relational Databases

- Developed in the early 1970s
- By 1980’s were all but the only type used

- (document databases making a big inroad in this dominance this
decade)

Relational Database fundamentals

* Database IS made up Of Tables em;_lh emp_ﬂr;t_name emp_last_name emp_;:hnne
- Tables consist of rows and columns 10057 Barbara Ku 1096
such that: 10693 Jessica Anne 7821

* There is no significance to the order of the columns or rows.
 Each row contains one and only one value for each column.

 Each value for a given column has the same type.
— Caveat: blob field equivalent of void* in most DBMS

e Each table in the database should hold information about one specific thing,
such as employees, products, or customers.

* Each row should hold a unique value
- At least one column value (or combo) for each row should be unique

RDMS fundamentals Il

* Every table has a ‘primary key’

- The value in every row (column or columns) that allows the row to be
uniquely identified

- EQ:

CUSTOMERS TABLE

Customer No| First Name Last Name

1 ‘Sally ‘Thompson .
2 Sally ‘Henderson
13 ‘Harry ‘Henderson

o Usua”y numeric ‘4 - ___Sandra __Wellington _
Primary Key

- But doesn’t have to be

RDMS llI:

* Foreign Keys

- Every table can have one or more foreign keys
— Column in table B has

CUSTOMERS TABLE

the Value Of the prlmary Custom;r No| First Name Last Name
key from Table A 1 Sally Thompson .
_ _ 12 Sally 'Henderson
* Links the records/rows in 3 Harry Henderson
_ , J
tables A and B 4 Sandra Wellington
—3 Primary Key
ORDERS ‘
Primary Key s> Supplier | Price
1 11 42 Harrison $235
2 4 1 Ford $234
3 1 68 Harrison $415
4 2 112 Ford $350
5 3 [42 Ford $234
6 2 112 Ford $350
7 2 2 Harrison $235

Tables, Rows and Columns oh my!

* Designing a database is a science and art of its own

- What should be rows, what should be columns

— Which things should be tables

* One-one, one-many, many-many relationships among data in tables

* Database managers have to make these decisions based on technological
and business concerns

- And these can change over time like programming
— But harder to refactor the database.

- Making these decisions are beyond the scope of this course
- I'll assume any significant database is built for you.

SOL

* When we interact with a Relational Databas SQL is the only
game in town.

— The full official standard is currently 1SO 9075

- 14 documents from the ISO each 80+ pages and several cost a
fair bit of money
* Giant, in places somewhat contradictory
* No one implements the whole thing

* With stored procedures is Turing complete.
— Turing complete?

Sqlite

* There are many sgl/RDMS databases out there

- For my examples we’ll use sqlite
* Very small lightweight RDMS database
— Comes pre setup with python
 Though I'll encourage you to install the graphical editor.

Ubuntu 20.04 and Friends

* To Install all the tools you’ll need on ubuntu 22.04 (most recent
LTS — also same for 23.10 etc)

— And linux mint and kubuntu based on 22.04
- sudo apt install sglite3
— sudo apt install sglitebrowser

* And you are Done for python

Mac and Windows

* There are installers that you can download from the official site
for the sqglite browser

* https://sglitebrowser.org/
At this point the python people should be all set.

https://sqlitebrowser.org/

Java with Sqlite

* Grab the sqlite jar file for jdbc from its repository

- https://mvnrepository.com/artifact/org.xerial/sqlite-jdbc

— As of Jan 2024 the latest version was
e sqlite-jdbc-3.45.jar
- Then to work with sqlite from intellij Idea (the jetbrains java IDE)

e https://www.jetbrains.com/help/idea/connecting-to-a-database.html

* There are directions for more than a dozen databases there. But consolidated
into a page of links, so click for the directions for sqlite.

https://mvnrepository.com/artifact/org.xerial/sqlite-jdbc
https://www.jetbrains.com/help/idea/connecting-to-a-database.html

Other options

* |f you want to do this in golang

nttps://github.com/mattn/go-sqlite3 is my preferred driver

Tutorial:

https://www.codeproject.com/Articles/5261771/Golang-SQLite-Simple
-Example

If you want to do this with rust
Built in support

* If you are working in C/C++ you need to provide configure files
and make files so | can build cross platform but sqglite was built
INn c/c++

lhttncec/hanannr ecnahita Arn/eimntroa hirmal

https://github.com/mattn/go-sqlite3
https://www.codeproject.com/Articles/5261771/Golang-SQLite-Simple-Example
https://www.codeproject.com/Articles/5261771/Golang-SQLite-Simple-Example
https://www.sqlite.org/cintro.html

SQL

 Manageable subset

- Lets explore a manageable subset of SQL
- My examples will use python and sqlite.
— First I'll use sqlite to create the database

Create the database

* First pass at program:

import sqglite3

from typing import Tuple

def (filename:str)->Tuple[sqlite3.Connection, sqlite3.Cursor]:
db connection = sqlite3.connect(filename)#connect to existing DB or create new one
cursor = db connection.cursor()#get ready to read/write data
return db_connection, cursor

def (connection:sqglite3.Connection):
connection.commit()#make sure any changes get saved
connection.close()

def ():
conn, cursor = open db("demo db.sqlite")
print(type(conn))
close db(conn)

if name == "' main_‘':

main()

Look at that

* |f we run this, it creates and empty database.

* In pycharm, the new database appears in the project main
directory

- Use the sqglite browser to look
 Empty database

* Note! For java and some other non-python database drivers it
won'’t create the database till we make our first table

Doing stuff to the database

* Once you have your database
— Use the cursor to execute sqgl statements
- Eg:
e cursor.execute("SELECT id, name, marks from SCHOOL"):

SQL: Create Table

 Create table statement used to create a new table in the db

» Official sqlite docs:

- CREATE TABLE [IF NOT EXISTS] [schema_name].table_name (
- column_1 data_type PRIMARY KEY,
- column_2 data type NOT NULL,
- column_3 data_type DEFAULT O,
- table constraint
-)
* Notice that SQL statements end in *;’

Create Table example

* Lets create two tables (then look at DB again)

def (cursor:sglite3.Cursor):
cursor.execute('''CREATE TABLE IF NOT EXISTS students(
banner id INTEGER PRIMARY KEY,
first name TEXT NOT NULL,
last name TEXT NOT NULL,
gpa REAL DEFAULT O,
credits INTEGER DEFAULT 0
); ')
cursor.execute('''CREATE TABLE IF NOT EXISTS course(
course prefix TEXT NOT NULL,
course number INTEGER NOT NULL,
cap INTEGER DEFAULT 20,
description TEXT,
PRIMARY KEY(course prefix, course number)

)t)

Now the last table

* Now lets ‘hook/glue it all together’ (lots to unpack here- describe)

cursor.execute('''CREATE TABLE IF NOT EXISTS class list(
registration id INTEGER PRIMARY KEY,

course prefix TEXT NOT NULL,

course number INTEGER NOT NULL,

banner id INTEGER NOT NULL,

registration date TEXT,

FOREIGN KEY (banner id) REFERENCES students (banner id)
ON DELETE CASCADE ON UPDATE NO ACTION,

FOREIGN KEY (course prefix, course number) REFERENCES course
(course prefix, course number)

ON DELETE CASCADE ON UPDATE NO ACTION

); ')

Putting Data In the tables

* Use the insert statement to put data into tables

def (cursor:sqglite3.Cursor):
cursor.execute(f"''"'INSERT INTO STUDENTS (banner id, first name, last name, gpa, credits)

VALUES (1001, "John", "Santore", {random.uﬁiform(0.0,Z.O)},
{random.randint(0,120)})''")

cursor.execute(f'"'"'INSERT INTO STUDENTS(banner id, first name, last name, gpa, credits)

VALUES (1002, "Enping", "Li", {random.uniform(0. 0, 4.0)}, {random.randint (0,
120)3)"'"'")

cursor.execute(f''"'INSERT INTO STUDENTS(banner id, first name, last name, gpa, credits)

VALUES (1003, "Margaret", "Black", {random. uniform(0.0, 4.0)}, {random.randint (0,
120)})"''")

cursor.execute(f''"'INSERT INTO STUDENTS(banner id, first name, last name, gpa, credits)

VALUES (1004, "Seikyung", "Jung", {random.uniform(0.0, 4.0)}, {random.randint(0,
120)}) ')
cursor.execute(f'"'"'INSERT INTO STUDENTS(banner id, first name, last name, gpa, credits)

VALUES (1005, "Haleh", "Khojasteh", {random uniform(0.0, 4.0)},
{random.randint (0, 120)})'"'")

And the courses

* For good measure lets do the courses

def (cursor:sqlite3.Cursor):
cursor.execute(f''"INSERT INTO COURSE (course prefix, course number, cap,
description)
VALUES ('COMP', 151, 24, 'This is the intro course, you will learn to program,
maybe for the first time')''"')
cursor.execute(f'"'"INSERT INTO COURSE (course prefix, course number, cap,
description)
VALUES ('COMP', 490, 20, 'This is the final course. You will get a chance to
apply much of what you learned throughout the undergrad degree')''"')
cursor.execute(f'"'"INSERT INTO COURSE (course prefix, course number, cap,
description)
VALUES ('MATH', 130, 20, 'This course is changing to include much more on graph
theory and number bases/systems')''"')

Now the Interesting data

Now We need to put data into the table with the foreign keys (note that I'm not explicitly adding

primary keys this time, Also arbitrary column order

def

(cursor:sqlite3.Cursor):

cursor.execute(f'"'"INSERT INTO CLASS LIST (banner id,

VALUES (1001, 'Comp', 490, DATE('now'))
III)

cursor.execute(f'"'"INSERT INTO CLASS LIST (banner id,

VALUES (1002, 'Comp', 490, DATE('now'))
III)

cursor.execute(f''"INSERT INTO CLASS LIST (banner id,

VALUES (1003, 'Comp', 490, DATE('now'))
III)

cursor.execute(f''"INSERT INTO CLASS LIST (banner id,

VALUES (1004, 'Comp', 490, DATE('now'))
III)

cursor.execute(f'"'"INSERT INTO CLASS LIST (banner id,

VALUES (1005, 'Comp', 490, DATE('now'))
III)

course prefix, course number,

course prefix, course number,

course prefix, course number,

course prefix, course number,

course prefix, course number,

registration date)

registration date)

registration date)

registration date)

registration date)

* |'ve just put the data in the database because it is all constants
written by me the programmer

* But when dealing with any data from users always use
parameterized insert to let library do sanitization of data

#records or rows in a list

records = [(1, 'Glen’, 8)
(2, 'Elliot’, 9),
(3, 'Bob’, 7)]

#insert multiple records in a single query
c.executemany('INSERT INTO students VALUES(?,?,7);',records);

Dates

« Some RDMS have a datetime type for fields

* Not sqglite
- Dates can be stored as Strings
- Dates can be stored as floats/Reals (use julianday function)
- Dates can be stored as ints (unix time epoch)

* Two builtin functions you want to think about (for string version)
- DATE

- DATETIME
- Both take params, most common value is ‘now’

More data maintenance

* There is more to SQL for data maintenance than inserting

- DELETE Statement
 Simple example: DELETE FROM table WHERE search_condition;
- UPDATE data:

« UPDATE table

e SET column_1 =new _value 1,

. column_2 = new_value 2

- WHERE

. search_condition

* ORDER column_or_expression
 LIMIT row_count OFFSET offset;

More Data maintenance

e Alter table

— Can add or delete or rename columns and more
- Fairly complex syntax, take comp405

* Drop table
- Remove table (and all its data) from the database (schema)

Lbl WITH)= > ‘[J, common-table-expression |)—J
L»(RECURSIVE »J 'Y
oS

Using data C =
g in.ﬂ.mi _T_q

* Using data in an RDMS ==y

Aka welcome to select
- Even in small sqglite the syntax is @ Em
complex

— This is the official graph for the finite sta
machine for select —

Simple Select

* The simplest version of Select

— SELECT <columns> FROM <table>

— Or more interesting:
e SELECT <columns> FROM <table> WHERE <column name> = <value>

Simple Select in python driver

* Lets see a simple select from one table:

(cursor:sqlite3.Cursor):
cutoff = float(input("What should the GPA cutoff be?"))
#question to class-what about security issues here?

#D1iscuss
result = cursor.execute(f'SELECT from STUDENTS WHERE\

gpa < {cutoff}"')
for row 1n result:
print (f'BannerId: {row[O]}\nName: {row[1]}\

{row[2] }\nGPA:{row[4]}")

def

Parameterized select

* You want to parameterize most select statements with user
data in them

e query ="“Select * from shows where year < ? and rank > ?”
e args = (year, ranking) #where these come from user input

* cursor.execute(query, args)

More interesting Select

* More Iinteresting data is found by joining two tables

— Terminology
* Inner join
e Quter join
* See comp405

— But rule of thumb: only join tables that have foreign keys,
otherwise you will have giant mess on your hands

More interesting select

* Example with lots to unpack and discuss

def (cursor:sqglite3.Cursor):
result = cursor.execute(f'''SELECT first name, last name, credits
FROM STUDENTS
INNER JOIN CLASS LIST ON
STUDENTS.banner id = CLASS LIST.banner id
WHERE (STUDENTS.credits < 60
and CLASS LIST.course prefix
and CLASS LIST.course number
for row in result:
print(f'{row[0]} {row[l]} somehow registered for Comp490 with only
{row[2]} credits')

Note: inner join on foreign key

‘Comp'’
490)|||)

Where clause columns need not be in result set.

RDMS finish

e Just a quick taste introduction
* Podcast
 Compiler Season 1 Episode 55

- https://www.redhat.com/en/compiler-podcast/tales-warning-signs

https://www.redhat.com/en/compiler-podcast/tales-warning-signs

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

