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Content

This presentation is brief survey of Lie theory
with an emphasis on nilpotent Lie groups, and
how the orbit methods is exploited for the pur-
pose of Harmonic analysis on nilpotent Lie groups.
If you are an expert in Lie theory, half of the pre-
sentation will be trivial. The other half which fo-
cuses on the orbit method will probably be new
to you if you are not in representation theory. If
you are not an expert in both Lie theory and rep-
resentation theory, my hope is that this presenta-
tion will show you the beauty that we see in these
theories, and convince you to join the rest of us
in the adventure.
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A starting point

A real Lie group is a set with two structures.
First G is a group and G is manifold. These struc-
tures agree in the sense that multiplication and
inversion maps are smooth. That is

1. (x, y) 7→ xy is a smooth map

2. x 7→ x−1 is a smooth map
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Some notations

The general Linear group over the real num-
bers denoted GL (n, R) is the group of all n× n
invertible matrices with real entries.

The general linear group over the complex num-
bers denoted GL (n, C) is the group of all n× n
invertible matrices with complex entries entries.

The set of all n × n matrices with entries in
some field K is called M(n, K). We usually think
of this set as a vector space. I will explain this
later.
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A precise definition of Matrix Lie groups

A matrix Lie group is any subgroup G of GL (n, C)
with the following property.

If (Am)m is any sequence of matrices in G and
if Am → A then either A is in G or A is not
invertible.

That is, a matrix Lie group is a closed subgroup
of GL (n, C) .

The fact that we require closeness is a technical-
ity issue. Most subgroups that we are interested
in are actually closed in the general linear groups.
However, there are non closed subgroups of the
general linear groups. I will give an example
soon.
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A non-closed subgroup of GL (n, C)

Here is an example of subgroup of GL (n, C)
which is not closed and is by definition not a ma-
trix Lie group.

G =

{[
eit 0
0 eit

√
2

]
: t ∈ R

}
Clearly G is a subgroup of GL (2, C) . In fact, the
closure of G is the torus T×T.
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Thus, there exists a sequence of matrices in G
convergent to [

−1 0
0 −1

]
/∈ G.

Thus G is not closed in GL(2, C)
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The Heisenberg group

N =


 1 y z

0 1 x
0 0 1

 : (x, y, z) ∈ R3


is a matrix Lie group. I will come back to this ex-
ample later. This group plays an important role
in several fields such as quantum mechanic, Ga-
bor analysis, wavelets, · · ·
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Exponential of a matrix

The exponential of a matrix plays a crucial role
in the theory of Lie group. The exponential en-
ters into the definition of the Lie algebra of a ma-
trix Lie group. I will spend some time on the
exponential map. There are many ways, we can
define an exponential function. One could use
a more geometric approach, using left invariant
vector fields, and integral curves... However, the
more accessible definition is the one that I want
to focus on.
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Let X be an n× n real or complex matrix. We
define

exp X =
∞

∑
k=0

Xm

m!

In fact this series is always convergent. Indeed,∥∥∥∥∥ ∞

∑
k=0

Xm

m!

∥∥∥∥∥ ≤ ∞

∑
k=0

∥∥∥∥Xm

m!

∥∥∥∥
≤

∞

∑
k=0

‖Xm‖
m!

≤
∞

∑
k=0

‖X‖m

m!

= e‖X‖ < ∞

Moreover, exp X is a continuous function of X.
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Some general facts about the exponential map

In general

1. exp X exp Y 6= exp Y exp X

2. exp (X + Y) = limn→∞ (exp (X/m) exp (Y/m))m

3. det eX = etrace(X)

The second formula above is known as the Lie
product formula. There are many others well-
known formulas but I will not mention them here.
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Here is an example of the exponential of a given
matrix.

exp

 1 0 0
1 1 0
0 1 1

 =

 e 0 0
e e 0

1
2e e e

 .
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The Matrix log function

We want to define a function which we wish should
be the inverse (or at least local inverse) to the ex-
ponential function. For any matrix of order n we
define

log A =
∞

∑
m=1

(−1)m+1 (A− I)m

m

whenever the series is convergent. In fact, it is
known that the series is convergent whenever the
norm of the matrix A− I is less than 1. It is also
clear that log A is always convergent whenever
A− I is nilpotent.
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For example,

log

 1 0 0
1 1 0
0 1 1

 =

 0 0 0
1 0 0
−1

2 1 0


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The Lie Algebra

Let G be a matrix Lie group. The Lie algebra of
G denoted g is the set of all matrices X such that

exp (tX)

is in G for all numbers t.
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Abstract Definition of Lie algebra

A finite-dimensional Lie algebra is a finite di-
mensional vector space g together with a map
[·, ·] from g× g → g with the following proper-
ties

1. [·, ·] is bilinear

2. [X, Y] = − [Y, X]

3. [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0

The third identity is known as the Jacobi identity.
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For example, if X is a complex matrix of order
n then exp (tX) is invertible. Thus the Lie algebra
of GL (n, C) is the set of all complex matrices of
order n. We write this Lie algebra as

gl (n, C) = M(n, C).
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The Lie algebra of the Heisenberg group is
 0 x z

0 0 y
0 0 0

 : x, y, z ∈ R


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The Adjoint mapping

Let G be a matrix Lie group with Lie algebra g.
Then for each p in G, we define the linear map

Adp : g→ g

by the formula

AdpY = pYp−1

In fact
p→ Adp

is a group homomorphism of G into GL (g) and
it is also easy to check that

Adp [X, Y] =
[
AdpX, AdpY

]
for all X, Y ∈ g.
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The little adjoint map

Given X ∈ g, we define

adX : g→ g

as follows
adXY = [X, Y]

and it is easy to check that

exp (adX) = Adexp X
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Basic Representation Theory

Let G be a matrix Lie group. Then, a finite-
dimensional real (or complex) representation of
G is a Lie group homomorphism

π : G → GL (V)

where V is a finite-dimensional real (or complex)
vector space. That is

1. π (xy) = π (x)π (y)

2. π is continuous.
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The trivial Representation

This is very stupid but I will do it anyway. Let
G be a group and define

π : G → GL (n, C)

such that π (x) = I for all x ∈ G.
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One-Parameter Representation

Here is a representation of R.

π : R→ GL (3, R)

and

π (t) =

 et 0 0
tet et 0
0 0 e−t

 .
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A representation of the Heisenberg group

Here is a more interesting example. Let g be the
Lie algebra spanned by the vectors X, Y, Z such
that [X, Y] = Z. Now, let G be its Lie group. G is
the Heisenberg group. Define

π : G → GL (3, R)

such that

π (exp Z) =

 1 0 0
0 1 0
0 0 1


π (exp Y) =

 1 0 −1
0 1 0
0 0 1


π (exp X) =

 1 1 0
0 1 0
0 0 1

 .

π (G) is actually isomorphic to R2. This is a non-
faithful representation of the Heisenberg group
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Let G be a locally compact group. A unitary
representation of G is a homomorphism π from
G into the group of unitary operators on some
non-zero Hilbert space which is continuous with
respect to the strong operator topology. That is

π : G → U (Hπ)

such that

1. π (xy) = π (x)π (y)

2. π
(

x−1
)
= π (x)−1 = π (x)∗

3. x → π (x) u is continuous from G to Hπ for
any u ∈ Hπ.
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It is worth noticing that strong continuity and
weak topologies are the same in U (Hπ). Thus,

x 7→ 〈π (x) u, v〉
is continuous from G to C.

Suppose that {Tα} is a net of unitary operators
convergent to T. Then for any u ∈ Hπ

‖(Tα− T) u‖2 = ‖Tαu‖2 + ‖Tu‖2− 2 Re 〈Tαu, Tu〉
= 2 ‖u‖2− 2 Re 〈Tαu, Tu〉

Thus,
‖(Tα− T) u‖2→ 0.

27



If π1 and π2 are unitary representations of G,
an intertwining operator for π1 and π2 is a bounded
linear operator T : Hπ1 → Hπ2 such that

Tπ1 (x) = π2 (x) T

for all x ∈ G. We say that π1 and π2 are unitarily
equivalent if there is a unitary operator T which
is intertwining the representations.
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Now suppose that K is a closed subspace of Hπ

such that that
π (G)K ⊂ K

We say that K is a π-invariant Hilbert subspace
of Hπ. Moreover, a representation π is irreducible
if the only π-invariant subspaces are the trivial
ones. That is the zero vector space and Hπ.
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The unitary dual

Given a locally compact group G, one of the
most important questions in representation the-
ory is to classify all of its unitary irreducible rep-
resentations. The set of all irreducible representa-
tions of G up to equivalence is called the unitary
dual and is denoted Ĝ

Ĝ = {[π] : π is irreducible}
Once, one knows the unitary dual of G, for a

fairly large class of groups, then it is possible to
do Fourier analysis. That is, one can define a
Fourier transform, a Plancherel transform and
even establish some natural notion of Plancherel
theory.
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The Classic stuff everyone knows

One the real line, the set of all unitary irre-
ducible representations of R forms a group iso-
morphic to R. In fact

R̂ = {πx = exp (2πix) ∈ T : x ∈ R}
The object exp (2πix) is regarded as an operator
on C into C acting on complex numbers by rota-
tions. That is

πx (z) = exp (2πix) (z) = exp (2πix)× z

Next, the Fourier-transform on L1 (R) is defined
as follows.

F f (λ) =
∫

R
f (x)πx (λ) dx
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Nilpotent Lie Algebras

Let g be a Lie algebra over the reals. The de-
scending central series of g is defined inductively
as follows.

1. g(1) = g

2. g(n+1) =
[
g, g(n)

]
We say that g is a nilpotent Lie algebra if there

is an integer n such that

g(n+1) = (0) .

If g(n) is not equal to the zero vector space then
n is minimal and we say that g is a nilpotent Lie
algebra of n-step.

This is very trivial. However, it is worth ob-
serving that every commutative Lie algebra is a
one-step Lie algebra.
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Let us suppose that

g = R− span {X, Y, Z}
such that the only non-trivial brackets are [X, Y] =
Z. Then

g(1) = g

g(2) = RZ

g(3) = (0) .

Thus, g is a two-step nilpotent Lie group.
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Let us suppose that

g = R− span {X, Y, Z, W}
such that the only non-trivial brackets are

[X, Y] = Z, [W, X] = Y

Then

g(1) = g

g(2) = RZ⊕RY

g(3) = RZ

g(4) = 0.

Thus, g is a three-step nilpotent Lie algebra
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Nilpotent Lie group

Let G be a Lie group with nilpotent Lie alge-
bra g. Then G is called a nilpotent Lie group.
Assume that G is a connected, simply connected
nilpotent Lie group. It is known that every con-
nected simply connected nilpotent Lie group has
a faithful embedding as a closed subgroup of group
of upper triangular matrices of order n with ones
on the diagonal.

35



What is the unitary dual of G

If G is a simply connected, connected nilpotent
Lie group? This is a deep question that has kept a
lot of mathematicians busy for a long time. With
the work of mainly Pukansky, Dixmier and Kir-
illov, this question has been settled in the sixties.
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Orbit method

Let G be a simply connected nilpotent Lie group
with nilpotent Lie algebra g. We donote the dual
of g by g∗. The group G acts on g∗ by the contra-
gradient of the adjoint map. That is given l ∈
g∗, x ∈ G and Y ∈ g

x · l (Y) = l (Adx−1Y) .

This action is called the coadjoint action. All irre-
ducible unitary representations of G are parametrized
by the set of coadjoint orbits. This is what the
orbit method is all about.
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Some interesting Fact

Let l ∈ g∗ and Ol = G · l, its coadjoint or-
bit. G · l is an even-dimensional smooth manifold
which has a natural symplectic form that turns
the manifold into a symplectic manifold. There
are some beautiful geometrical theorems about
this fact, which I will not talk about.
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The unitary dual of the Heisenberg group

Let us consider the Heisenberg group.

G =


 1 x z

0 1 y
0 0 1

 : x, y, z ∈ R


g =


 0 X Z

0 0 Y
0 0 0

 : Z, Y, X ∈ R

 ,

and the dual vector space

g∗=


 0 0 0

α 0 0
λ β 0

 : λ, α, β ∈ R

 .
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Then 1 x z
0 1 y
0 0 1

 ·
 0 0 0

α 0 0
λ β 0

 =

 0 0 0
α + yλ 0 0

λ β− xλ 0


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Notice that if λ 6= 0, then the coadjoint orbit of 0 0 0
0 0 0
λ 0 0


is two-dimensional plane

 0 0 0
t 0 0
λ r 0

 : (t, r) ∈ R2


Next, the coadjoint orbit of 0 0 0

α 0 0
0 β 0


is the linear functional itself.
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Thus, the unitary dual of N is parametrized by
the following set
 0 0 0

0 0 0
λ 0 0

 : λ 6= 0

 ·∪

 0 0 0

α 0 0
0 β 0

 : (α, β) ∈ R2


 0 0 0

0 0 0
λ 0 0

 7→ infinite dimensional unitary irr

 0 0 0
α 0 0
0 β 0

 7→ one-dimensional unitary irr rep
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The unitary dual of a step-three nilpotent Lie
group

Let g = RZ⊕RY⊕RX⊕RW such that the only
non-trivial Lie brackets are given by

[X, Y] = Z, [W, X] = Y

Then there is faithful matrix representation of G
such that

G =




0 x −y 0 3z
0 0 w −x 2y
0 0 0 0 x
0 0 0 0 w
0 0 0 0 0

 : x, y, z, w ∈ R


.
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We may identify g and its dual (vector space
of linear functionals) with R4. This identification
will make the discussion easier to present.
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Let λ ∈ g∗. Writing λ = (λ1, λ2, λ3, λ4) ,

G · λ =
{ (

λ1, λ2− sλ1, λ3 + rλ1− uλ2 +
1
2suλ1, λ2s− 1

2λ1s2 + λ4
)

:
r, s, u ∈ R

}
1. If λ1 6= 0 the coadjoint orbits are two dimen-

sional and are parametrized by

Σ1 = {(λ1, 0, 0, λ4) ∈ g∗ : λ1 6= 0, λ4 ∈ R}

2. If λ1 = 0 and λ2 6= 0 then

Σ2 = {(0, λ2, 0, 0) ∈ g∗ : λ2 6= 0}

3. If λ1 = 0 and λ2 = 0 then the coadjoint or-
bits are two dimensional as well, and they are
parametrized by

Σ3 = {(0, 0, λ3, λ4) ∈ g∗}

4. The unitary dual of G is then parametrized by

Σ =
3⋃

k=1
Σk
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Exponential Solvable Lie groups

Let G = Rn o H where

H = exp (RA1⊕ · · · ⊕RAm) < GL (n, R)

where the Ak are upper triangular matrices with
non purely imaginary complex numbers. The
group multiplication in G is

(v1, M1) (v2, M2) = (v1 + M1v2, M1M2) .

Then G is an exponenial solvable Lie group with
Lie algebra g = Rn ⊕ h. The orbit method works
for this class of groups as well.
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An example of Solvable Lie group

Here is a concrete example G = R3 o H where
H = exp (RA1⊕RA2) and

A1 =

 0 0 1
0 0 0
0 0 0

 , A2 =

 1 0 0
0 1 1
0 0 1

 .

Then

h =


 t2 0 t1

0 t2 t2
0 0 t2

 : (t1, t2) ∈ R


H =


 et2 0 t1et2

0 et2 t2et2

0 0 et2

 : (t1, t2) ∈ R


Then the unitary dual of G is parametrized by

Σ =
4⋃

k=1
Σk
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Σ1 =
{
(v1, v2, 0) ∈ R3 : |v1| = 1

}
Σ2 =

{
(0, v2, 0) ∈ R3 : v2 6= 0

}
Σ3 =

{
(0, 0, v3) ∈ R3 : |v3| = 1

}
Σ4 = {(0, 0, 0)}
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What do we do with all of this stuff?

There is more to the story on how to construct
unitary irreducible representations from a paramet
rization of the coadjoint orbits. Unfortunately, I
do not have enough time to give a thorough ex-
posure of the theory. This presentation is only a
brief overview. In fact the orbit method general-
izes to a larger class of Lie groups called expo-
nential solvable Lie groups.

With this theory available, then we have a nice
Plancherel and Fourier theory which is well un-
derstood. Then one could attempt to answer the
following (modern analysis) questions.
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Some modern active area of research

1. Can we construct wavelets on non-commutative
Nilpotent Lie groups?

2. How far can we go with the explicit construc-
tion of wavelets on non-commutative nilpotent
Lie groups?

3. Could we generalize the theory of Paley-Wiener
spaces?

4. Can we talk about sampling theory, and re-
construction of bandlimited spaces on nilpo-
tent Lie groups

5. Linear Independence of translates on the Nilpo-
tent Lie groups. In the case of the Heisenberg
group, this question is connected to the well-
known HRT conjecture and Gabor analysis
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If you are interested in learning more about Lie
groups especially nilpotent Lie groups here are
some nice resources.
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If you are interested in more recent research ac-
tivities related to the questions above, please re-
fer to
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