Band-limited Spaces on Some 2-step Nilpotent Lie Groups With One Parseval Frame Generator

Vignon S. Oussa

Saint Louis University

January 7th 2012
Definition

Let \mathcal{H} be a Hilbert space, and let $\{\phi_i : i \in I\}$ be a countable sequence of vectors in \mathcal{H}. $\{\phi_i : i \in I\}$ forms a Parseval frame (PF) if and only if for any $f \in \mathcal{H}$, $\sum_{i \in I} |\langle f, \phi_i \rangle|^2 = \|f\|_{\mathcal{H}}^2$.

Example

Any ONB in \mathcal{H} is a PF. The sequence $\left\{ \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\}$ is a PF for \mathbb{C}.

Fact

(Expansion property) If $\{\phi_i : i \in I\}$ forms a PF for \mathcal{H},

$$f = \sum_{n \in I} \langle f, \phi_n \rangle \phi_n.$$
Definition

Let \(G \) be a locally compact connected type I group endowed with a left Haar measure. Let \(\mathcal{H} \) be a closed left-invariant subspace for \(L^2(G) \), and let \(\Gamma \) be a discrete set in \(G \). We say a function \(\phi \) is a \textbf{PF generator} if and only if the set of all translates of \(\phi \) by elements of \(\Gamma \) forms a PF for \(\mathcal{H} \).

Example

(Paley-Wiener space) Let \(G = \mathbb{R} \), \(\Gamma = \mathbb{Z} \), \(\phi(x) = \text{sinc}(x) \) and define the \textbf{band-limited} subspace of \(L^2(\mathbb{R}) \).

\[
\mathcal{H} = \left\{ f \in L^2(\mathbb{R}) : \text{supp} \hat{f} \subseteq [-1/2, 1/2] \right\},
\]

\(\{\phi(\cdot - k) : k \in \mathbb{Z}\} \) forms a PF and an ONB.
Let \mathbb{H} be the Heisenberg group with Lie algebra \mathfrak{n} spanned by $\{X, Y, Z\}$, $[X, Y] = Z$.

L is the Left regular representation of \mathbb{H}.

The Plancherel Transform is supported on \mathbb{R}^* with Plancherel measure $|\lambda| \, d\lambda$.

$$\mathcal{P} : L^2(\mathbb{H}) \to \int_{\mathbb{R}^*}^{\oplus} L^2(\mathbb{R}) \otimes L^2(\mathbb{R}) |\lambda| \, d\lambda.$$

\mathbb{H} is the simplest nilpotent Lie group which is step two.

Theorem

(Hartmut Fuhr) Let \mathbf{H} be a closed left invariant mult-free band-limited subspace of $L^2(\mathbb{H})$ with

$$\mathcal{P}(\mathbf{H}) = \int_{[-0.5,0.5]}^{\oplus} \left(L^2(\mathbb{R}) \otimes \mathbb{C} \mathbf{u} \right) |\lambda| \, d\lambda,$$

where \mathbf{u} is a unit vector. There exists a vector $\mathbf{\phi} \in \mathbf{H}$ and a lattice $\Gamma \subset \mathbf{H}$ such that $L(\Gamma) \mathbf{\phi}$ forms a PF for \mathbf{H}.
Problem

Let N be a simply connected, connected step two nilpotent Lie group. Let L be the left regular representation of N. Let H be a closed left invariant, band-limited subspace of $L^2(N)$. How do we pick a discrete subset $\Gamma \subset N$ and a function ϕ in H such that $L(\Gamma)\phi$ forms a PF or an ONB in H?

- (Non nilpotent groups) Dooley (1989) studied band-limited subspaces defined on motion groups of the type $\mathbb{R}^k \rtimes K$, K is compact matrix group.
- Fuhr and Grochenig (2005). General results for band-limited spaces on stratified nilpotent Lie groups. They used sub-Laplacians but obtained no PF.

We are interested in PF, ONB and explicit description of Γ and ϕ.
Theorem

Let N be a non commutative simply connected, connected step two nilpotent Lie group such that the Lie algebra of the center is $\mathfrak{z} = \mathbb{R}Z_1 \cdots \mathbb{R}Z_{n-2d}$, and

$$n = \mathfrak{z} \oplus \mathbb{R}Y_1 \cdots \mathbb{R}Y_d \oplus \mathbb{R}X_1 \cdots \mathbb{R}X_d.$$

Assume \mathfrak{p} is a commutative ideal, \mathfrak{m} is commutative subalgebra of n and $\exp \mathfrak{m} < \text{Aut} (\exp \mathfrak{p})$. Let H be a multiplicity free subspace of $L^2(N)$ with bounded spectrum. There exists a quasi-lattice $\Gamma \subset N$ and a function $\phi \in H$ such that $L(\Gamma)\phi$ forms a Parseval frame for H.

• The Heisenberg group with Lie algebra spanned by X, Y, Z with $[X, Y] = Z$.

• $n = \mathbb{R} \text{-span}\{Z_1, Z_2, Y_1, Y_2, X_1, X_2\}$

 $$[X_k, Y_k] = Z_1$$
 $$[X_i, Y_j] = Z_2, \text{ for } i \neq j.$$

• $n = \mathbb{R} \text{-span}\{Z_1, \ldots, Z_{2d}, Y_1, \ldots, Y_d, X_1, \ldots, X_d\}$

 $$[X_j, Y_i] = Z_{i+j} \text{ for } 1 \leq i, j \leq d.$$
Almost all of the irreducible representations of N act in $L^2(\mathbb{R}^d)$. \textcolor{red}{\textbf{Orbit method}}

Irred rep act by multiplication of characters, \textbf{translations and modulations}.

Translations + modulations = multivariate Gabor systems.

Dual of N is parametrized by a Zariski open subset of \mathfrak{z}^*

$$\hat{N} = \{ \pi_\lambda : \lambda \in \mathfrak{z}^* \}.$$
Let \mathcal{P} be the Plancherel transform, and the support of the Plancherel measure is $\Sigma \subset \mathfrak{g}^*$.

$$\Sigma = \{ \lambda \in \mathfrak{g}^* : \det \mathbf{B}(\lambda) \neq 0 \}$$

- $\mathcal{P}(\mathbf{H}) = \int_{\Sigma}^{\oplus} (L^2(\mathbb{R}^d) \otimes \mathbb{C}u) \mathbf{P}(\lambda) d\lambda$, \mathbf{H} is left-invariant, mult-free, band-limited closed subspace of $L^2(\mathbb{N})$, and
 $$\|u\|_{L^2(\mathbb{R}^d)} = 1.$$

- $\mathbf{P}(\lambda) d\lambda$ is the Plancherel measure, $\mathbf{P}(\lambda) = |\det \mathbf{B}(\lambda)|$ and

$$\mathbf{B}(\lambda) = \begin{pmatrix}
\lambda [X_1, Y_1] & \cdots & \lambda [X_1, Y_d] \\
\vdots & \ddots & \vdots \\
\lambda [X_d, Y_1] & \cdots & \lambda [X_d, Y_d]
\end{pmatrix}.$$
The spectrum of \mathbf{H} is bounded i.e.

$$S \subseteq \prod_{k=1}^{n-2d} \left[-\frac{a_k}{2}, \frac{a_k}{2} \right] \cap \Sigma.$$

Let $m = \sup \{ P(\lambda) : \lambda \in S \}$. Define the quasi-lattice

$$\Gamma = \exp \left(\frac{\mathbb{Z}Y_1 \cdots + \mathbb{Z}Y_d}{m^{1/d}} \right) \exp \left(\frac{\mathbb{Z}Z_1}{a_1} + \cdots + \frac{\mathbb{Z}Z_{n-2d}}{a_{n-2d}} \right).$$
• There exists \(\phi \in H \) such that \(L(\Gamma)\phi \) forms a Parseval frame in \(H \).

\[
\mathcal{P}\phi(\lambda) = \frac{g(\lambda)}{\sqrt{a_1 \cdots a_{n-2d} |\det B(\lambda)|}} \otimes u,
\]

where the Gabor system

\[
\mathcal{G}(g(\lambda), \text{Diag}(m^{-1/d}, \ldots, m^{-1/d})) \mathcal{Z}^d \times B(\lambda)\mathcal{Z}^d
\]

forms a Parseval Frame for almost every \(\lambda \in S \). (The existence of \(g(\lambda) \) is due to the density condition of multivariate gabor systems).