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Sampling on the real line

How can we recover a function f : R — C if we only know a
countable set of values

(f () er?

Formulated this way, the problem is ill-posed since there are in-
finitely many functions that take the same prescribed values on a
given countable set. We consider the Paley-Wiener space

PW := {f e L2(R) : supp f C [—%%] }

The Paley-Wiener space consists of equivalence classes of functions.
Since the Fourier transform of these functions has compact support.
Each of the equivalence classes contains a continuous function. De-
fine the sinc-function by

. SN §f x £ 0
sinc (x) = { ﬂlxifx:?)é :



Theorem 1 (Shannon’s sampling theorem) The functions {sinc (x — k) },.,
form an orthonormal basis for PW.If f €e PWNC(R), then

=Y _ f (k)sinc (x — k)

keZ

with convergence of the symmetric partial sums in L* (R) and pointwise
forall x € R.
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Proof. (Shannon’s sampling theorem) Since {e () X(-1/21 /2)} ez

forms an orthonormal base in L? (—1/2,1/2),

1/2

F (™ Ox 11)) (7) = /_ L, & dx = sine (y k).

Since the Fourier transform is unitary, then {sinc (x — k) },_, is or-
thonormal as well. Now, let f € L! (R) N PW N C (R). Then

_ Z CkeZm'k(-)

keZ

where
1/2

Cr = f(y)e 2 rdy.
—-1/2

Since the partial sums of the Fourier series converge in the norm of

L*(-1/2,1/2)
1/2

/_1/2

since, we are dealing with finite interval then
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In fact ¢, = f( k). Next, for all x € R, using (1)
/ f 27'czx'yd,)/

1/2 , .
/ ) eka'y eme'yd,y
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flr)— Y, ce 27 dy —+ 0as N — oo

n=—N

dy — 0as N — oo. (1)
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=) f (k)sinc(x — k).
kez



Next, to show that this series converges in L (R), we use the fact
that (f (k)7 € 12(Z).

Z f (k) sinc (

|k|>N

' f— Z f (k) sinc (

|k|>N

Y. If (B



Sampling on locally compact groups

Let N be a locally compact group, and let I' be a discrete subset
of N. Let H be a left-invariant closed subspace of L? (N) consisting
of continuous functions. We call H a sampling space with respect
to I' (or I'-sampling space) if

1. The restriction mapping Rr : H — I?(T'), Rrf = (f (7)),cr i
an isometry.

2. There exists a vector S € H such that for any vector f € H, we
have the following expansion

fx)=) f(1S(r'x)

yel

with convergence in the norm of H.

The vector S is called a sinc-type function. Moreover, if Rr is
surjective, we say that the sampling space H has the interpolation

property.



Sampling on the Heisenberg groups

Let H be the three-dimensional Heisenberg Lie group with Lie
algebra spanned by X, Y, Z such that [X, Y] = Z. We may write

H = exp (RZ) exp (RY) exp (RX) .

Next, put
[ =exp (ZZ)exp (ZY)exp (ZX).
Then I' is a discrete subgroup of the Heisenberg group.

Theorem 2 (H. Fuhr, 2005) The Heisenberg group admits sampling spaces
with respect to .

Theorem 3 (B. Currey, A. Mayeli, 2009) The Heisenberg group admits a
sampling space with respect to I which also has the interpolation property.



Sampling on some nilpotent Lie groups

Theorem 4 (O.) Let N be a simply connected, connected, two-step nilpo-
tent Lie group with Lie algebra n of dimension n such thatn = a @ b @ 3,
where [a,b] C 3, a,b, 3 are abelian algebras such that

a = R-span {X1, Xo, - -+, X4},

b =R-span{Y1, Yo, -, Y4},

d = R_Span {le ZZ/ Tty Zn—Zd} ’
d>1,n>2dand

[ X1, Y] - [ X4, Y4

det (2)

X)) - [Xo Y

is a non-vanishing homogeneous polynomial in the unknowns Z1, - - - , Z,,_24.

Put
n—2d d d
I'=exp ( Z ZZk> exp ( ZYk> exp (Z ZXk> :
k=1 k=1 k=1

Then N admits sampling spaces with respect to T'.



A toy example

Let N be a nilpotent Lie group with Lie algebra n which is
spanned by the following vectors

21,25, Y1, Y2, X1, X2
such that
(X, 1] = Zy, [ X1, Y2] = Z4
(X2, Y1] =0, [Xo, Y2 = Zs.
Then )
det Z01 2 =717,

is a non-zero polynomial in the unknowns Z;Z,. Thus, N belongs
to the class of groups considered. Put

' =exp(ZZ1+ZZy) exp (ZY1+ ZY>) exp (ZX1+ ZX3) .

10



Plancherel theory

e The unitary dual of N is parametrized by an open subset of
R? :
Y= {(A,A2) € R*: \A # 0}

e The irreducible representations of N can be realized as acting
in L? (IR?) as follows. For every (A1, A7) € Z,

T ah) (€XP (2121 + 2225)) f (t1, t2) = e MA2TR222 £ (1, 1))

TTa0,) (€Xp (y1Y1 +y2Y2)) f (t1, f2) = €_2m< [ )E)l ;\\l] Bi H 2 ] >f (
Ty (exp (11X1 4+ 22X2)) f (h1, £2) = f (b — x1,t2 — X2)

e Let P be the Plancherel transform on L? (N) and F the Fourier
transform defined on L?(N) N L'(N) by

F(F) ) = [ f () s, () .
Then
P:L*(N) —>/Z@L2 (R?) @ L2 (R?) |A1A,| dAidA,

is such that the Plancherel transform is the extension of the
Fourier transform to L?(N) inducing the equality

£ 00 = LIP (F) (A2 lfs 1Aahe] dhad

e The Plancherel measure here is |A1A;| dA1dA,.
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Bandlimitation

Let L be the left regular representation of N. Put

H = fELz(N)iP(f)()\)Z{ [01)

Then H is a bandlimited multiplicity-free, left-invariant subspace
of L? (N).
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Lemma 5 Let ¢ € H such that P (f) (A1, A2) = Xpg1)2 @ X(g1y2- For
every vector P € H,

Y WL = Il

yerl
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Proof. The computations are very formal. First, identify I’ with Z°.

Y @, L(7) )yl

YyEZS
2
= L |y P Q) () 0P () skl 2
YyEZS 22
2
fr (A1,A2) 2
24 22 /[_1 1]2 e—27‘ci/\1kle—2ni2\2k2<PlP ()\) , TTA (")’1) |)\1)\2‘ X[O,l)z (029 X[0’1)2>H8d)\
Y1EZ* keZ 2/2
(4)
2
Z Z /[ 1 1]2 e—27ri/\1kle—27'(i)\2k2f71 </\1’ AZ) )
Y1EZ4* keZ? 2/2
Z Z f 1 (k1,k2) ‘ Z | f, || (Apply Plancherel theor for L2 (Tz) )
V1EZ4* keZ? v eZ4
E /[ 1 1]2 |f’Yl )‘1//\2)| dA (5)
ez’ 722
E / n , 700 (1) |A1A2\X012®X01 > ‘ dA (subs f,, back)
cz4’ | z
(6)
/[_%% Z < , TTA (r)/l) (|/\1A2|1/2 ) > ®X01 > ‘ |/\1)\2| d)\ (7)
2]y ezt
Now, we write
P (A) = 0A® Xy for vy € L* (R?) .
Then
2
(@, L(7) )al” = / or, 0 (71) |AMAR] 2 g A1 Aa| dA
= o Bl 011
Typically,

([0 a5 ])
|/\1)\2\1/27m(71)7([0,1)2(tl,tz):|A1A2|1/ze 0 Az [ ma || ta Xiory (1= ki, t2 -
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and with well-known arguments from Gabor theory,

2

vgl <U)\, 7 (71) ‘7\1/\2\1/2X[0,1)2>L2(R2) = ”v/\HiZ(IRZ)
Finally
726% (¥, L () 4’>H]2 — /[_5,;]2 HUA”iz(le) AAa| dA = ||l/)||il
m
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Remark 6 We remark that
2

2 —_—
Il = /[%%]2 012 gy P10
1/2 1/2
(A1As| dArdA,
1/2 -1/2
16

Thus L (T') ¢ is not an orthonormal basis.
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Admissibility and sampling

Definition 7 Let (71, H;) denote a strongly continuous unitary repre-
sentation of a locally compact group G. We say that the representation
(71, Hy) is admissible if and only if the map W, : H;— L* (G),

Woip (x) = (¢, 7t (x) ¢)

defines an isometry of H into L? (G) , and we say that ¢ is an admissible
vector or a continuous wavelet.
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Theorem 8 (H. Fuhr) Let I be a discrete subset of G. Let ¢ be an admis-
sible vector for (7t, H) such that for all p € Hy

Y, m (M) = ¢l

yerl
Then K = W, (Hy) is a I'-sampling space, and Wy, (¢) is the associated
sinc-type function for K.

Proof. Since we assume that 77 is a strongly (thus weakly) con-
tinuous homomorphism, then it is easy to see that K = W, (Hy)
consists of continuous functions. Now, let f = Wy1. Then the fact

that ¥, [, 70 (7) ¢)|* = ||9|[3, implies that

f=W, (Z(%ﬂ(?)4)>ﬂ(7)¢>-

So,
W, (t/ﬂ(’@ =f(v) (m (7)&%(-)@
f= Z% 7T (1) ¢) (Wt (1) ¢)
=L f T em()e)
yel
==;fWM%NW”)@
= er(v) Wod (1)

The above series converges in the norm of H and uniformly as well.
Finally, since W is an isometry then

Z }W(qu ’ = Z| W, 7 ( ’ = |‘¢HH - HW<P¢HL2

yel yer

This completes the proof. =
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Finally, let

o feL2<N>:7><f><A>={

Let ¢ € H such that P (f) (A1, A2) = Xjg12 ® X[g1)21t is easy to
show that the map W, : H — L*(N),

Woyp (x) = (¢, L (x) §)

is an isometry. Since for all € H

Y 1w, L o) = 1¢lh

yerl

then according to the above result, the Hilbert space
K =W, (H)

is a I'-sampling space, and W, (¢) is the associated sinc-type func-
tion for K.
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We remark that unlike in the case of the real line, not every choice
of bounded subset of X leads to the existence of sampling spaces
for the group we consider in this example. One necessary condition
for a left-invariant subspace H to be a sampling space is that the
Fourier transforms of vectors in H are supported on a set E which
is contained in

{(xl,xz) - ]R2 : ‘X1XQ| 75 0, ‘X1XQ’ < 1} .

In the example illustrated above this is clearly the case as shown in
this picture:
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The general case

ot AXy, Y] -0 A[Xy, YY)
B(A) = : s ,
AXgYa] -0 A Xy, Y4
and define
Z:{AE@*zR“‘zd:det(B(/\))#O,/\(Xl):---}
=A(Xy)=A(Y1)=---=A(Yy) =0 '

We say a function f € L?(N) is bandlimited if its Plancherel
transform is supported on a bounded measurable subset of 2. Fix
a measurable field of unit vectors e = {e,}, 5 where e, € L? (RY).
We say a Hilbert space is a multiplicity-free left-invariant subspace

of L2 (N) if
H(e) =P </2@ L? (le) ® ey du ()\)) :

Next, we define
E={A €3 :|detB(A)| #0, and |detB(A)| < 1}. (8)

For any given bounded set A C %, we define the correspond-
ing multiplicity-free, bandlimited, left-invariant Hilbert subspace
H (e, A) as follows

H(e,A) = P! (/@ I2 (le> ®eA]detB(A)]d)\). 9)

A

Now, let C C I C R""? such that the collection {I+ k : k € Z"21}
forms a measurable partition of R" 4.
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Theorem 9 Let N be a connected, simply connected nilpotent Lie group
satisfying the conditions given. There exists ¢ € H (e, EN C) such that
W, (H (e, ENC)) is a T-sampling subspace of L* (N) with sinc-type
function Wy(¢). Moreover, W, (H (e, ENC)) does not generally have
the interpolation property with respect to I'.
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