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Sampling on the real line

How can we recover a function f : R → C if we only know a
countable set of values

( f (k))k∈I?

Formulated this way, the problem is ill-posed since there are in-
finitely many functions that take the same prescribed values on a
given countable set. We consider the Paley-Wiener space

PW :=
{

f ∈ L2 (R) : supp f̂ ⊆
[
−1

2
,
1
2

]}
.

The Paley-Wiener space consists of equivalence classes of functions.
Since the Fourier transform of these functions has compact support.
Each of the equivalence classes contains a continuous function. De-
fine the sinc-function by

sinc (x) =

{
sin(πx)

πx if x 6= 0
1 if x = 0

.
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Theorem 1 (Shannon’s sampling theorem) The functions {sinc (x− k)}k∈Z

form an orthonormal basis for PW. If f ∈ PW ∩ C (R) , then

f (x) = ∑
k∈Z

f (k) sinc (x− k)

with convergence of the symmetric partial sums in L2 (R) and pointwise
for all x ∈ R.

4



Proof. (Shannon’s sampling theorem) Since
{

e2πik(·)χ(−1/2,1/2)
}

k∈Z

forms an orthonormal base in L2 (−1/2, 1/2) ,

F
(

e2πik(·)χ(−1/2,1/2)

)
(γ) =

∫ 1/2

−1/2
e2πikxe−2πixγdx = sinc (γ− k) .

Since the Fourier transform is unitary, then {sinc (x− k)}k∈Z is or-
thonormal as well. Now, let f ∈ L1 (R) ∩ PW ∩ C (R) . Then

f̂ (·) = ∑
k∈Z

cke2πik(·)

where

ck =
∫ 1/2

−1/2
f̂ (γ) e−2πikγdγ.

Since the partial sums of the Fourier series converge in the norm of
L2 (−1/2, 1/2)∫ 1/2

−1/2

∣∣∣∣∣ f̂ (γ)− N

∑
n=−N

cke−2πikγ

∣∣∣∣∣
2

dγ→ 0 as N → ∞

since, we are dealing with finite interval then∫ 1/2

−1/2

∣∣∣∣∣ f̂ (γ)− N

∑
n=−N

cke−2πikγ

∣∣∣∣∣ dγ→ 0 as N → ∞. (1)

In fact ck = f (−k). Next, for all x ∈ R, using (1)

f (x) =
∫

R

f̂ (γ) e2πixγdγ

=
∫ 1/2

−1/2

(
∑
k∈Z

f (−k) e2πikγ

)
e2πixγdγ

= ∑
k∈Z

f (−k)
∫ 1/2

−1/2
e2πikγe2πixγdγ

= ∑
k∈Z

f (−k)
∫ 1/2

−1/2
e2πiγ(x+k)dγ

= ∑
k∈Z

f (k) sinc (x− k) .
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Next, to show that this series converges in L2 (R), we use the fact
that ( f (k))k∈Z ∈ l2 (Z) .∥∥∥∥∥ f −

N

∑
k=−N

f (k) sinc (· − k)

∥∥∥∥∥ =

∥∥∥∥∥ ∑
|k|>N

f (k) sinc (· − k)

∥∥∥∥∥ =

√
∑
|k|>N

| f (k)|2 → 0.
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Sampling on locally compact groups

Let N be a locally compact group, and let Γ be a discrete subset
of N. Let H be a left-invariant closed subspace of L2 (N) consisting
of continuous functions. We call H a sampling space with respect
to Γ (or Γ-sampling space) if

1. The restriction mapping RΓ : H → l2 (Γ) , RΓ f = ( f (γ))γ∈Γ is
an isometry.

2. There exists a vector S ∈ H such that for any vector f ∈ H, we
have the following expansion

f (x) = ∑
γ∈Γ

f (γ) S
(
γ−1x

)
with convergence in the norm of H.

The vector S is called a sinc-type function. Moreover, if RΓ is
surjective, we say that the sampling space H has the interpolation
property.
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Sampling on the Heisenberg groups

Let H be the three-dimensional Heisenberg Lie group with Lie
algebra spanned by X, Y, Z such that [X, Y] = Z. We may write

H = exp (RZ) exp (RY) exp (RX) .

Next, put
Γ = exp (ZZ) exp (ZY) exp (ZX) .

Then Γ is a discrete subgroup of the Heisenberg group.

Theorem 2 (H. Fuhr, 2005) The Heisenberg group admits sampling spaces
with respect to Γ.

Theorem 3 (B. Currey, A. Mayeli, 2009) The Heisenberg group admits a
sampling space with respect to Γ which also has the interpolation property.
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Sampling on some nilpotent Lie groups

Theorem 4 (O.) Let N be a simply connected, connected, two-step nilpo-
tent Lie group with Lie algebra n of dimension n such that n = a⊕ b⊕ z,
where [a, b] ⊆ z, a, b, z are abelian algebras such that

a = R-span {X1, X2, · · · , Xd} ,
b = R-span {Y1, Y2, · · · , Yd} ,
z = R-span {Z1, Z2, · · · , Zn−2d} ,

d ≥ 1, n > 2d and

det

 [X1, Y1] · · · [X1, Yd]
... · · · ...

[Xd, Y1] · · · [Xd, Yd]

 (2)

is a non-vanishing homogeneous polynomial in the unknowns Z1, · · · , Zn−2d.
Put

Γ = exp

(
n−2d

∑
k=1

ZZk

)
exp

(
d

∑
k=1

ZYk

)
exp

(
d

∑
k=1

ZXk

)
.

Then N admits sampling spaces with respect to Γ.
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A toy example

Let N be a nilpotent Lie group with Lie algebra n which is
spanned by the following vectors

Z1, Z2, Y1, Y2, X1, X2

such that

[X1, Y1] = Z1, [X1, Y2] = Z1

[X2, Y1] = 0, [X2, Y2] = Z2.

Then

det
[

Z1 Z1

0 Z2

]
= Z1Z2

is a non-zero polynomial in the unknowns Z1Z2. Thus, N belongs
to the class of groups considered. Put

Γ = exp (ZZ1 + ZZ2) exp (ZY1 + ZY2) exp (ZX1 + ZX2) .
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Plancherel theory

• The unitary dual of N is parametrized by an open subset of
R2 :

Σ =
{
(λ1, λ2) ∈ R2 : λ1λ2 6= 0

}
.

• The irreducible representations of N can be realized as acting
in L2

(
R2
)

as follows. For every (λ1, λ2) ∈ Σ,

π(λ1,λ2) (exp (z1Z1 + z2Z2)) f (t1, t2) = e2πiλ1z1e2πiλ2z2 f (t1, t2)

π(λ1,λ2) (exp (y1Y1 + y2Y2)) f (t1, t2) = e
−2πi

〈 λ1 λ1

0 λ2

 y1

y2

,

 t1

t2

〉
f (t1, t2)

π(λ1,λ2) (exp (x1X1 + x2X2)) f (t1, t2) = f (t1− x1, t2− x2)

• Let P be the Plancherel transform on L2 (N) and F the Fourier
transform defined on L2(N) ∩ L1(N) by

F ( f ) (λ) =
∫

N
f (n)π(λ1,λ2) (n) dn.

Then

P : L2 (N)→
∫ ⊕

Σ
L2 (R2)⊗ L2 (R2) |λ1λ2| dλ1dλ2

is such that the Plancherel transform is the extension of the
Fourier transform to L2(N) inducing the equality

‖ f ‖2
L2(N) =

∫
Σ
‖P ( f ) (λ1, λ2)‖2

HS |λ1λ2| dλ1dλ2.

• The Plancherel measure here is |λ1λ2| dλ1dλ2.
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Bandlimitation

Let L be the left regular representation of N. Put

H =

 f ∈ L2 (N) : P ( f ) (λ) =

{
uλ ⊗ χ

[0,1)2 if λ ∈
[
−1

2, 1
2

]2

0 if λ /∈
[
−1

2, 1
2

]2 where

uλ ∈ L2
(
R2
)


Then H is a bandlimited multiplicity-free, left-invariant subspace
of L2 (N) .
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Lemma 5 Let φ ∈ H such that P ( f ) (λ1, λ2) = χ
[0,1)2 ⊗ χ

[0,1)2. For
every vector ψ ∈ H,

∑
γ∈Γ
|〈ψ, L (γ) φ〉|2 = ‖ψ‖2

H .
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Proof. The computations are very formal. First, identify Γ with Z6.

∑
γ∈Z6

|〈ψ, L (γ) φ〉H|
2

= ∑
γ∈Z6

∣∣∣∣∣
∫
[− 1

2 , 1
2 ]

2 〈Pψ (λ) , πλ (γ) ◦ Pφ (λ)〉HS |λ1λ2| dλ

∣∣∣∣∣
2

= ∑
γ∈Z6

∣∣∣∣∣
∫
[− 1

2 , 1
2 ]

2

〈
Pψ (λ) , πλ (γ) |λ1λ2| χ[0,1)2 ⊗ χ

[0,1)2

〉
HS

dλ

∣∣∣∣∣
2

(3)

= ∑
γ1∈Z4

∑
k∈Z2

∣∣∣∣∣∣∣∣
∫
[− 1

2 , 1
2 ]

2 e−2πiλ1k1e−2πiλ2k2

fγ1(λ1,λ2)︷ ︸︸ ︷〈
Pψ (λ) , πλ (γ1) |λ1λ2| χ[0,1)2 ⊗ χ

[0,1)2

〉
HS

dλ

∣∣∣∣∣∣∣∣
2

(4)

= ∑
γ1∈Z4

∑
k∈Z2

∣∣∣∣∣
∫
[− 1

2 , 1
2 ]

2 e−2πiλ1k1e−2πiλ2k2 fγ1 (λ1, λ2) dλ

∣∣∣∣∣
2

= ∑
γ1∈Z4

∑
k∈Z2

∣∣∣ f̂γ1 (k1, k2)
∣∣∣2 = ∑

γ1∈Z4

‖ fγ1‖
2 (Apply Plancherel theor for L2 (T2) )

= ∑
γ1∈Z4

∫
[− 1

2 , 1
2 ]

2 | fγ1 (λ1, λ2)|2 dλ (5)

= ∑
γ1∈Z4

∫
[− 1

2 , 1
2 ]

2

∣∣∣〈Pψ (λ) , πλ (γ1) |λ1λ2| χ[0,1)2 ⊗ χ
[0,1)2

〉
HS

∣∣∣2 dλ (subs fγ1 back)

(6)

=
∫
[− 1

2 , 1
2 ]

2 ∑
γ1∈Z4

∣∣∣〈Pψ (λ) , πλ (γ1)
(
|λ1λ2|1/2 χ

[0,1)2

)
⊗ χ

[0,1)2

〉
HS

∣∣∣2 |λ1λ2| dλ (7)

Now, we write
Pψ (λ) = vλ ⊗ χ

[0,1)2 for vλ ∈ L2 (R2) .

Then

∑
γ1∈Z6

|〈ψ, L (γ) φ〉H|
2 =

∫
[− 1

2 , 1
2 ]

2 ∑
γ1∈Z4

∣∣∣∣〈vλ, πλ (γ1) |λ1λ2|1/2 χ
[0,1)2

〉
L2(R2)

∣∣∣∣2 |λ1λ2| dλ.

Typically,

|λ1λ2|1/2 πλ (γ1) χ
[0,1)2 (t1, t2) = |λ1λ2|1/2 e

−2πi

〈 λ1 λ1

0 λ2

 m1

m2

,

 t1

t2

〉
χ
[0,1)2 (t1− k1, t2− k2)
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and with well-known arguments from Gabor theory,

∑
γ1∈Γ1

∣∣∣∣〈vλ, πλ (γ1) |λ1λ2|1/2 χ
[0,1)2

〉
L2(R2)

∣∣∣∣2 = ‖vλ‖2
L2(R2)

Finally

∑
γ∈Γ
|〈ψ, L (γ) φ〉H|

2 =
∫
[− 1

2 , 1
2 ]

2 ‖vλ‖2
L2(R2) |λ1λ2| dλ = ‖ψ‖2

H
.
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Remark 6 We remark that

‖φ‖2
H
=
∫
[−1

2 ,1
2]

2

∥∥∥χ
[0,1)2

∥∥∥2

L2(R2)
dλ1dλ2

=
∫ 1/2

−1/2

∫ 1/2

−1/2
|λ1λ2| dλ1dλ2

=
1

16
.

Thus L (Γ) φ is not an orthonormal basis.
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Admissibility and sampling

Definition 7 Let (π, Hπ) denote a strongly continuous unitary repre-
sentation of a locally compact group G. We say that the representation
(π, Hπ) is admissible if and only if the map Wφ : Hπ→ L2 (G) ,

Wφψ (x) = 〈ψ, π (x) φ〉

defines an isometry of H into L2 (G) , and we say that φ is an admissible
vector or a continuous wavelet.
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Theorem 8 (H. Fuhr) Let Γ be a discrete subset of G. Let φ be an admis-
sible vector for (π, Hπ) such that for all ψ ∈ Hπ

∑
γ∈Γ
|〈ψ, π (γ) φ〉|2 = ‖ψ‖2

Hπ

Then K = Wφ (Hπ) is a Γ-sampling space, and Wφ (φ) is the associated
sinc-type function for K.

Proof. Since we assume that π is a strongly (thus weakly) con-
tinuous homomorphism, then it is easy to see that K = Wφ (Hπ)
consists of continuous functions. Now, let f = Wφψ. Then the fact
that ∑γ∈Γ |〈ψ, π (γ) φ〉|2 = ‖ψ‖2

Hπ
implies that

f = Wφ

(
∑
γ∈Γ
〈ψ, π (γ) φ〉π (γ) φ

)
.

So,

f = ∑
γ∈Γ

Wφ(ψ(γ))= f (γ)︷ ︸︸ ︷
〈ψ, π (γ) φ〉

〈π(γ)φ,π(·)φ〉︷ ︸︸ ︷(
Wφπ (γ) φ

)
= ∑

γ∈Γ
f (γ) 〈π (γ) φ, π (·) φ〉

= ∑
γ∈Γ

f (γ)
〈
φ, π

(
γ−1·

)
φ
〉

= ∑
γ∈Γ

f (γ)Wφφ
(
γ−1·

)
The above series converges in the norm of H and uniformly as well.
Finally, since Wφ is an isometry then

∑
γ∈Γ

∣∣Wφψ (γ)
∣∣2 = ∑

γ∈Γ
|〈ψ, π (γ) φ〉|2 = ‖ψ‖2

H =
∥∥Wφψ

∥∥2
L2(G)

.

This completes the proof.
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Finally, let

H =

 f ∈ L2 (N) : P ( f ) (λ) =

{
uλ ⊗ χ

[0,1)2 if λ ∈
[
−1

2, 1
2

]2

0 if λ /∈
[
−1

2, 1
2

]2 where

uλ ∈ L2
(
R2
)


Let φ ∈ H such that P ( f ) (λ1, λ2) = χ

[0,1)2 ⊗ χ
[0,1)2.It is easy to

show that the map Wφ : H→ L2 (N) ,

Wφψ (x) = 〈ψ, L (x) φ〉

is an isometry. Since for all ψ ∈ H

∑
γ∈Γ
|〈ψ, L (γ) φ〉|2 = ‖ψ‖2

H

then according to the above result, the Hilbert space

K = Wφ (H)

is a Γ-sampling space, and Wφ (φ) is the associated sinc-type func-
tion for K.
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We remark that unlike in the case of the real line, not every choice
of bounded subset of Σ leads to the existence of sampling spaces
for the group we consider in this example. One necessary condition
for a left-invariant subspace H to be a sampling space is that the
Fourier transforms of vectors in H are supported on a set E which
is contained in{

(x1, x2) ∈ R2 : |x1x2| 6= 0, |x1x2| ≤ 1
}

.

In the example illustrated above this is clearly the case as shown in
this picture:
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The general case

Put

B (λ) =

 λ [X1, Y1] · · · λ [X1, Yd]
... . . . ...

λ [Xd, Y1] · · · λ [Xd, Yd]

 ,

and define

Σ =

{
λ ∈ z∗ = Rn−2d : det (B (λ)) 6= 0, λ (X1) = · · ·

= λ (Xd) = λ (Y1) = · · · = λ (Yd) = 0

}
.

We say a function f ∈ L2(N) is bandlimited if its Plancherel
transform is supported on a bounded measurable subset of Σ. Fix
a measurable field of unit vectors e = {eλ}λ∈Σ where eλ ∈ L2

(
Rd
)

.
We say a Hilbert space is a multiplicity-free left-invariant subspace
of L2 (N) if

H (e) = P−1
(∫ ⊕

Σ
L2
(

Rd
)
⊗ eλ dµ (λ)

)
.

Next, we define

E = {λ ∈ z∗ : |det B (λ)| 6= 0, and |det B (λ)| ≤ 1} . (8)

For any given bounded set A ⊂ Σ, we define the correspond-
ing multiplicity-free, bandlimited, left-invariant Hilbert subspace
H (e, A) as follows

H (e, A) = P−1
(∫ ⊕

A
L2
(

Rd
)
⊗ eλ |det B (λ)| dλ

)
. (9)

Now, let C ⊂ I ⊂ Rn−2d such that the collection
{

I+ k : k ∈ Zn−2d
}

forms a measurable partition of Rn−2d.
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Theorem 9 Let N be a connected, simply connected nilpotent Lie group
satisfying the conditions given. There exists φ ∈ H (e, E ∩ C) such that
Wφ (H (e, E ∩ C)) is a Γ-sampling subspace of L2 (N) with sinc-type
function Wφ(φ). Moreover, Wφ (H (e, E ∩ C)) does not generally have
the interpolation property with respect to Γ.
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