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BANDLIMITED SPACES ON SOME 2-STEP
NILPOTENT LIE GROUPS WITH ONE PARSEVAL

FRAME GENERATOR

VIGNON OUSSA

ABSTRACT. Let N be a step two connected and simply
connected non commutative nilpotent Lie group which is
square-integrable modulo the center. Let Z be the center
of N . Assume that N = P o M such that P and M
are simply connected, connected abelian Lie groups, P is
a maximal normal abelian subgroup of N , M acts non-
trivially on P by automorphisms and dimP/Z = dimM . We
study bandlimited subspaces of L2(N) which admit Parseval
frames generated by discrete translates of a single function.
We also find characteristics of bandlimited subspaces of
L2(N) which do not admit a single Parseval frame. We also
provide some conditions under which continuous wavelets
transforms related to the left regular representation admit
discretization, by some discrete set Γ ⊂ N . Finally, we show
some explicit examples in the last section.

1. Introduction. In the classical case of L2(R), closed subspaces
where Fourier transforms are supported on a bounded interval enjoy
some very nice properties. Such subspaces are called band-limited sub-
spaces of L2(R). Among other things, these subspaces are stable under
the regular representation of the real line; for each class of functions be-
longing to these spaces there exists an infinitely smooth representative,
and more importantly, these spaces admit frames and bases generated
by discrete translations of a single function. A classical example is the
Paley-Wiener space defined as the space of functions in L2(R) with
Fourier transform supported within the interval [−0.5, 0.5]. For such a
space, the set of integer translates of the sinc function (sin(πx))/(πx)
forms a Parseval frame, and even better, it is an orthonormal basis for
the space (see [6]). These notions are easily generalized to L2(Rd). It
is then natural to investigate whether similar results are possible when
R is replaced with a connected, simply connected non commutative
Lie group N . Since the closest Lie groups to Rn are simply connected,
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connected step two nilpotent Lie groups, this class of groups is a natu-
ral one to consider. For example, in [8], Thangavelu has studied Paley
Wiener theorems for step two nilpotent Lie group. In the monograph
[3], Führ has studied sampling theorems for the Heisenberg group,
which is the simplest noncommutative nilpotent Lie group of step two.
Using various theorems related to Gabor frames, he obtained some
nice conditions on how to construct Parseval frames invariant under
the left regular representation of the Heisenberg group restricted to
some lattice subgroups ([3, Chapter 6]). His results, even though
very precise and explicit, were obtained in the restricted case of the
Heisenberg Lie group. In this paper, we study subspaces of bounded
spectrum of L2(N) where N belongs to a class of connected, simply
connected nilpotent Lie groups satisfying the following conditions. N
is a 2-step nilpotent Lie group which is square-integrable modulo the
center. We also assume that N = P o M such that P and M are
simply connected, connected commutative Lie groups such that P is a
maximal normal subgroup of N which is commutative. Furthermore,
M acts non-trivially on P , and if Z denotes the center of N , then
dimM = dimP/Z. On the Lie algebra level, there exist commutative
Lie subalgebras m, and m1 such that n = m ⊕ m1 ⊕ z, m is the Lie
algebra of the subgroup M , m1 ⊕ z is the Lie algebra of the maximal
normal subgroup P , dimm = dimm1, z is the center of n, and finally
the adjoint action of m on n is non-trivial. We answer the following
questions.

Question 1.1. Letting L be the left regular representation acting on
L2(N), and letting H be a closed band-limited subspace of L2(N), how
do we pick a discrete subset Γ ⊂ N and a function ϕ in H such that the
system L(Γ)ϕ forms either a Parseval frame or an orthonormal basis
in H?

Question 1.2. What are some necessary conditions for the existence
of a single Parseval frame generator for any arbitrary band-limited
subspace of L2(N)?

Question 1.3. What are some characteristics of band-limited sub-
spaces of L2(N) which admit discretizable continuous wavelets. What
are some characteristics of the quasi-lattices allowing the discretiza-
tions?
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In order to provide answers to these questions, we relax the definition
of lattice subgroups by considering a broader class of discrete sets
which we call quasi-lattices. It turns out that these quasi-lattices must
satisfy some specific density conditions which we provide in this paper.
We show how to use systems of multivariate Gabor frames to obtain
Parseval frames for band-limited subspaces of L2(N) with bounded
multiplicities.

In the first section, we start the paper by reviewing some background
materials. In the second section, we prove our results, and finally we
compute some explicit examples in the last section. Among several
results obtained in this paper, the theorem below is the most important
one.

Theorem 1.4. Let N be a simply connected, connected step two
nilpotent Lie group with center Z of the form N = P o M such
that P is a maximal commutative normal subgroup of N , where M
is a commutative subgroup, and dim(P/Z) = dim(M). Let H be
a multiplicity-free subspace of L2(N) with bounded spectrum. There
exists a quasi-lattice Γ ⊂ N and a function ϕ such that the system
{L(γ)ϕ : γ ∈ Γ} forms a Parseval frame in H.

2. Generalities and notations.

Definition 2.1. Given a countable sequence {fi}i∈I of functions in
an separable Hilbert space H, we say {fi}i∈I forms a frame if and
only if there exist strictly positive real numbers A,B such that, for any
function f ∈ H,

A ∥f∥2 ≤
∑
i∈I

|⟨f, fi⟩|2 ≤ B ∥f∥2 .

In the case where A = B, the sequence of functions {fi}i∈I forms a
tight frame, and if A = B = 1, {fi}i∈I is called a Parseval frame. Also,
if {fi}i∈I is a Parseval frame such that for all i ∈ I, ∥fi∥ = 1, then
{fi}i∈I is an orthonormal basis for H.

Definition 2.2. A lattice Λ in R2d is a discrete subgroup of the
additive group R2d. In other words, Λ = AZ2d for some matrix A.
We say Λ is a full rank lattice if A is nonsingular, and we denote the
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dual of Λ by Λ⊤ = A−1trΛ (Atr denotes the transpose of A). We say a
lattice is separable if Λ = AZd ×BZd. A fundamental domain D for a
lattice in Rd is a measurable set such that the following hold.

(1) (D + λ) ∩ (D + λ′) ̸= ∅ for distinct λ, λ′ in Λ.
(2) Rd =

∪
λ∈Λ(D + λ). We say D is a packing set for Λ if∑

λ χD(x− λ) ≤ 1 for almost every x ∈ Rd.
(3) Let Λ = AZd × BZd be a full rank lattice in R2d and g ∈

L2(Rd). The family of functions in L2(Rd),

(2.1) G
(
g,AZd ×BZd

)
=

{
e2πi⟨k,x⟩g (x− n) : k ∈ BZd, n ∈ AZd

}
is called a Gabor system.

Definition 2.3. Let m be the Lebesgue measure on Rd, and consider
a full rank lattice Λ = AZd inside Rd.

(1) The volume of Λ is defined as vol (Λ) = m(Rd/Λ) = | detA|.
(2) The density of Λ is defined as d(Λ) = 1/| detA|.

Lemma 2.4 (Density condition). Given a separable full rank lattice
Λ = AZd ×BZd in R2d. The following are equivalent :

(1) there exists g ∈ L2(Rd) such that G(g, AZd × BZd) is a
Parseval frame in L2(Rd).

(2) vol (Λ) = |detAdetB| ≤ 1.
(3) There exists g ∈ L2(Rd) such that G(g,AZd×BZd) is complete

in L2(Rd).

Proof. See Theorem 3.3 in [5]. �

Lemma 2.5. Let Λ be a full rank lattice in R2d. There exists
g ∈ L2(Rd) such that G(g,Λ) is an orthonormal basis if and only if
vol (Λ) = 1. Also, if G(g,Λ) is a Parseval frame for L2(Rd), then
∥g∥2 = vol (Λ).

Proof. See [5, Theorem 1.3 and Lemma 3.2]. �

Next, we start by setting up some notations. We will refer the reader
to [1] for a more thorough exposition on the following discussion. Let
n be a simply connected, and connected nilpotent Lie algebra over
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R with corresponding Lie group N = exp n. Let s be a subalgebra
in n, and let λ be a linear functional. We define the subalgebra
sλ = {Z ∈ n : λ[Z,X] = 0 for every X ∈ s} and s(λ) = sλ ∩ s. The
ideal z(n) denotes the center of the Lie algebra of n, and the coadjoint
action on the dual of n is simply the dual of the adjoint action of exp n
on n. Given any X ∈ n the coadjoint action is defined multiplicatively
as follows: expX ·λ(Y ) = λ(Adexp−XY ). We fix for n a Jordan Hölder
basis {Zi}ni=1, and we define the subalgebras: nk = R-span {Zi}ki=1.
Given any linear functional λ ∈ n∗, we construct the following skew-
symmetric matrix:

M (λ) = [λ [Zi, Zj ]]1≤i,j≤n .

Notice that n(λ) = nullspace (M(λ)). Also, for each λ ∈ n∗, there is a
corresponding set e(λ) ⊂ {1, 2, . . . , n} of “jump indices” defined by

e (λ) = {1 ≤ j ≤ n : nk not a subset of nk−1 + n (λ)} .

For each subset e inside {1, 2, . . . , n} the set Ωe = {λ ∈ n∗ : e(λ) = e}
is algebraic and N -invariant. The union of all such non-empty layers
defines the “coarse stratification” of n∗. It is known that all coajdoint
orbits must have even dimension and there is a total ordering ≺ on
the coarse stratification for which the minimal element is Zariski open
and consists of orbits of maximal dimension. Let e be the set of jump
indices corresponding to the minimal layer. We define the following
matrix which will be very important for this paper:

(2.2) V (λ) = [λ [Zi, Zj ]]i,j∈e .

From now on, we fix the layer

(2.3) Ω = {λ ∈ n∗ : detMe′ (λ) = 0 for all e′ ≺ e

and detMe (λ) ̸= 0} .

We define the polarization subalgebra associated with the linear func-
tional λ

p(λ) = Σn
k=1 (nk (λ) ∩ nk) .

p(λ) is a maximal subalgebra subordinated to λ such that λ[p(λ), p(λ)] =
0 and χλ(expX) = e2πiλ(X) defines a character on exp(p(λ)). In gen-
eral, we have for some positive integer d ≥ 1,

(1) dim(n/n(λ)) = 2d.
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(2) p(λ) is an ideal in n and dim p(λ) = n− d.
(3) dim(n/p(λ)) = d.

For each linear functional λ, let a(λ) and b(λ) be subalgebras of n such
that a(λ) is isomorphic to n/p(λ) and b(λ) is isomorphic to p(λ)/n(λ).
We let

a(λ) = R−span {Xi (λ)}di=1 ,

b(λ) = R−span {Yi (λ)}di=1 ,

n (λ) = R−span {Zi (λ)}n−2d
i=1 ,

and n = n(λ) ⊕ b(λ) ⊕ a(λ).

Lemma 2.6. Given λ ∈ Ω, if n(λ) is a constant subalgebra for any
linear functional λ, then n(λ) = z(n).

Proof. First, it is clear from its definition that n(λ) ⊇ z(n). Second,
let us suppose that there exits some W ∈ n(λ) such that W is not a
central element. Thus, there must exist at least one basis element X
such that [W,X] is non-trivial but λ[W,X] = 0. Using the structure
constants of the Lie algebra, let us suppose that [W,X] =

∑
k ckZk for

some non-zero constant real numbers ck. Then it must be the case that∑
k ckλk = 0 where λk is the kth coordinate of the linear function λ

for all λ ∈ Ω. By the linear independency of the λk, ck = 0 for all k.
We reach a contradiction. �

According to the orbit method, all irreducible representations of
N are in one-to-one correspondence with coadjoint orbits which are
parametrized by a smooth cross-section Σ homeomorphic with Ω/N
via Kirillov’s map. Defining for each linear functional λ in the generic
layer, a character of exp p(λ) such that χλ(expX) = e2πiλ(X), we realize
almost all the unitary irreducible representations of N “a la Mackey”
as πλ = IndN

exp p(λ)(χλ). An explicit realization of {πλ : λ ∈ Σ} is

discussed later on in this section. We invite the reader to refer to [1]
for more details concerning the construction of Σ. For the remainder
of this paper, we will assume that we are only dealing with a “nicer”
class of nilpotent Lie algebras such that the following hold:

(1) For any linear functional λ in the layer Ω, the polarization
subalgebra p(λ) is constant, and the stabilizer subalgebra n(λ)
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for the coadjoint action on N on λ ∈ Ω is constant as well. In
other words, there exist bases for p(λ) and n(λ) which do not
depend on the linear functional λ. We simply write p(λ) = p
and n(λ) = z(n).

(2) n/p, p and p/z(n) are commutative algebras such that

n = z(n) ⊕ (RY1 ⊕ · · · ⊕RYd) ⊕ (RX1 ⊕ · · · ⊕RXd)

with p = z(n)⊕(RY1⊕· · ·⊕RYd) and n = p⊕(RX1⊕· · ·⊕RXd).
(3) n is 2-step. In other words, [n, n] ⊂ z(n) and, given any

Xk,Yr ∈ n, [Xk, Yr] =
∑

krj
ckrj

Zkrj
, where ckrj

are structure

constants which are not necessarily nonzero. Letting m1 =
RY1 ⊕ · · · ⊕ RYd, m = RX1 ⊕ · · · ⊕ RXd and M = exp(m).
P = exp p and M1 = expm1 are commutative Lie groups such
that N = P oM . M acts on P as follows. For any m ∈M and
x ∈ P , m · x = mxm−1 and the matrix representing the linear
operator ad log(m) is a nilpotent matrix with ad logm ̸= 0
but (ad logm)2 = 0 (0 is the n × n matrix with zero entries
everywhere).

There is a fairly large class of nilpotent Lie groups which satisfy the
criteria above. Here are just a few examples.

(1) Let H be the 2d+1-dimensional Heisenberg Lie group, with Lie
algebra spanned by the basis {Z, Y1, . . . , Yd, X1, . . . , Xd} with
the following non-trivial Lie brackets [Xi, Yi] = Z for 1 ≤ i ≤ d.
Now, let N = H ×Rk. Both N and H belong to the class of
nilpotent Lie groups described above.

(2) Let N be a nilpotent Lie group, with its Lie algebra n spanned
by the following basis {Z1, Z2, Y1, Y2, X1, X2} with non-trivial
Lie brackets

[X1, Y1] = [X2, Y2] = Z1,

and [X1, Y2] = [X2, Y1] = Z2. This group also satisfies all the
conditions above.

(3) Let N be a nilpotent Lie group with its Lie algebra n spanned
by the basis {Z1, Z2, Z3, Z4, Y1, Y2, X1, X2} with the following
nontrivial Lie brackets [X1, Y1] = Z2, [X2, Y1] = [X1, Y2] = Z3

and [X2, Y2] = Z4. There is a generalization of this group which
we describe here. Fix a natural number d. Let N be a nilpotent
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Lie group with Lie algebra n spanned by the following basis
{Z1, . . . , Z2d, Y1, . . . , Yd, X1, . . . , Xd}, with the following non-
trivial Lie brackets; for i, j ≥ 1 and i, j ≤ d, [Xj , Yi] = Zi+j .
The center of n is 2d-dimensional and the commutator ideal
[n, n] is spanned by {Z2, . . . , Z2d}.

Definition 2.7. For a given basis element Zk ∈ n, we define the dual
basis element λk ∈ n∗ such that

λk (Zj) =

{
0 if k ̸= j
1 if k = j.

Lemma 2.8. Under our assumptions, for this class of groups, a cross-
section for the coadjoint orbits of N acting on the dual of n is described
as follows

Σ = {(λ1, . . . , λn−2d, 0, . . . , 0)} ∩ Ω = z (n)
∗ ∩ Ω.

Furthermore, identifying z(n)∗ with Rn−2d, Σ is a dense and open co-
null subset of Rn−2d with respect to the canonical Lebesgue measure.

Proof. The jump indices for each λ are e ={n− 2d + 1, . . . , n}. By
[1, Theorem 4.5 ], Σ = {(λ1, . . . , λn−2d, 0, . . . , 0)} ∩ Ω. Referring to
the definition of Ω in (2.3), the proof of the rest of the lemma follows.
Notice that det(V (λ)) is a non-zero polynomial function defined on
z(n)∗ = Rn−2d. Thus, det(V (λ)) is supported on a co-null set of Rn−2d

with respect to the Lebesgue measure. �

We refer the reader to [2] which is a standard reference book for
representation theory of nilpotent Lie groups. In this paragraph, we
will give an almost complete description of the unitary irreducible
representations of N . They are almost all parametrized by Σ, and
they are of the form πλ = IndN

exp p(λ)(χλ) (λ ∈ Σ) acting in the Hilbert
completion of the functions space

B =

{
f : N → C such that f (xy) = χλ (y)

−1
f (x) for y ∈ exp p,

and x ∈ N/ exp p and
∫
N/ exp p

f (x) dx <∞

}
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which is isometric and isomorphic with L2(N/ exp p) and is naturally
identified with L2(Rd) via

exp (x1X1 + · · · + xdXd) 7−→ (x1, · · · , xd) .

The action of πλ is obtained in the following way: πλ(x)f(y) = f(x−1y)
for f ∈ B. We fix a coordinate system for elements of N . More
precisely, for any n ∈ N ,

n = exp (z1Z1 + · · · + zn−2dZn−2d) exp (y1Y1 + · · · + ydYd)

× exp (x1X1 + · · · + xdXd) ,

the following holds true:

(1) Let F ∈ L2(Rd),

πλ (exp zkZk)F (x1,. . ., xd)=e2πiλzkF (x1, . . ., xd) for Zk ∈ z (n) .

Elements of the center of the group act on L2(Rd) by multipli-
cation by characters.

(2) πλ(exp(t1X1 + · · ·+ tdXd))F (x1, . . . , xd) = F (x1 − t1, . . . , xd−
td). Thus, elements of the subgroup M act by translations on
L2(Rd).

(3) Put x = (x1, . . . , xd), y = (y1, . . . , yd) and define, for λ ∈ Σ,

(2.4) B (λ) = −

 λ [X1, Y1] · · · λ [Xd, Y1]
...

...
λ [Xd, Y1] · · · λ [Xd, Yd]

 .

πλ(exp y1Y1 · · · exp ydYd)F (x) = e2πi⟨x
tr,B(λ)ytr⟩F (x). There-

fore, elements of the subgroup M1 act by modulations on
L2(Rd).

This completes the description of all the unitary irreducible represen-
tations of N which will appear in the Plancherel transform. Next, we
consider the Hilbert space L2(N) where N is endowed with its canon-
ical Haar measure. P denotes the Plancherel transform on L2(N),
λ = (λ1, . . . , λn−2d) ∈ Σ and dµ(λ) = |det(B(λ))| dλ is the Plancherel
measure (see [2, Chapter 4]). We have

P : L2 (N) −→
∫ ⊕

Σ

L2
(
Rd

)
⊗ L2

(
Rd

)
dµ (λ)
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where the Fourier transform is defined on L2(N) ∩ L1(N) by

F (f) (λ) =

∫
Σ

f (n)πλ (n) dn,

and the Plancherel transform is the extension of the Fourier transform
to L2(N) inducing the equality ∥f∥2L2(N) =

∫
Σ
∥P(f)(λ)∥2HSdµ(λ)

(∥ · ∥HS denotes the Hilbert Schmidt norm on L2(Rd) ⊗ L2(Rd)). Let
L be the left regular representation of the group N . We have,

L ≃ PLP−1 =

∫ ⊕

Σ

πλ ⊗ 1L2(Rd) dµ (λ) ,

where 1L2(Rd) is the identity operator on L2(Rd) and the following
holds almost everywhere: P(L(x)ϕ)(λ) = πλ(x) ◦Pϕ(λ). Furthermore,
the Plancherel transform is used to characterize all left-invariant sub-
spaces of L2(N). In fact, referring to [3, Corollary 4.17], the projection
P onto any left-invariant subspace of L2(N) corresponds to a field of

projections such that PPP−1 ≃
∫ ⊕
S

(1L2(Rd) ⊗ P̂λ) dµ(λ) where S is

measurable subset of Σ, and for µ almost every λ, P̂λ corresponds to a
projection operator onto L2(Rd).

Definition 2.9. A quasi-lattice of N is a discrete subset of N which
is homeomorphic to Zd.

Definition 2.10. Let a, q, b be vectors with strictly positive real
number entries such that a = (a1, . . . , an−2d), b = (b1, . . . , bd) and
q = (q1, . . . , qd). We denote Γa,q,b the family of quasi-lattices such that

Γa,q,b =


n−2d∏
j=1

exp

(
mj

aj
Zj

)
d∏

j=1

exp

(
kj
qj
Yj

)
d∏

j=1

exp

(
nj
bj
Xj

)
:

mj , kj , nj ∈ Z

 .

Elements of Γa,q,b will be of the type γa,q,b = exp((m1/a1)Z1) · · · exp
((mn−2d)/(an−2d)Zn−2d) (exp(k1)/(q1)Y1)· · ·(exp(kd)/(qd)Yd) exp((n1/
b1)X1 + · · · + (nd/bd)Xd). For each fixed quasi-lattice Γa,q,b we also
define the corresponding reduced quasi-lattice

Γq,b =


d∏

j=1

exp

(
kj
qj
Yj

) d∏
j=1

exp

(
nj
bj
Xj

)
: kj , nj ∈ Z

 .
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Elements of the reduced quasi-lattice will be of the type

γq,b =

(
exp

k1
q1
Y1

)
· · ·

(
exp

kd
qd
Yd

)
exp

(
n1
b1
X1 + · · · +

nd
bd
Xd

)
.

Definition 2.11. We say a function f ∈ L2(N) is band-limited if its
Plancherel transform is supported on a bounded measurable subset of
Σ.

Let I ⊆ {λ ∈ Σ : 0 ≤ λi ≤ ai} (without loss of generality,
one could take I ⊆ {λ ∈ Σ : −ai/2 ≤ λi ≤ ai/2}). We fix
{u(λ) = u : λ ∈ I} a measurable field of unit vectors in L2(Rd).

We consider the multiplicity-free subspace F =
∫ ⊕
I
L2(Rd) ⊗ u dµ(λ)

which is naturally isomorphic and isometric with
∫ ⊕
I
L2(Rd) dµ(λ) via

the mapping: {fλ ⊗ u}λ∈I 7→ {fλ}λ∈I. Observe that{
n−2d∏
k=1

e2πi⟨mk/ak, ·⟩
√
ak

: mk ∈ Z

}

forms a Parseval frame for L2(I). Next, let b = (b1, . . . , bd) and
q = (q1, . . . , qd). We define the d× d diagonal matrix D(q) with entry
1/qi on the ith row, and similarly, we define the following d×d matrix:

(2.5) A (b) =


1

b1
· · · 0

...
. . .

...

0 · · · 1

bd

 .

These matrices will be useful for us later.

As a general comment, we would like to mention here that, due
to Hartmut Führ, the concept of continuous wavelets associated to
the left regular representation of locally compact type I groups is well
understood. A good source of reference is the monograph [3]. We also
bring to the reader’s attention the following fact. In the case of the
Heisenberg group, Azita Mayeli provided in [7] an explicit construction
of band-limited Shannon wavelet using notions of frame multiresolution
analysis.
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Definition 2.12. Let (π,Hπ) be a unitary representation of N . We
define the map Wη : Hπ → L2(N) such that Wηϕ(x) = ⟨ϕ, π(x)η⟩. A
vector η ∈ Hπ is called admissible for the representation π if Wη defines
an isometry on Hπ. In this case, η is called a continuous wavelet or an
admissible vector.

Let L denote the left regular representation, due to Führ [3]. It is
known that in general for a non discrete locally compact topological
group of type I, (L,L2(G)) is admissible if and only if G is nonunimod-
ular. Thus, in fact for our class of groups, (L,L2(N)) is not admissible
since any nilpotent Lie group is unimodular. However, there are sub-
spaces of L2(N) which admit continuous wavelets for L.

Lemma 2.13. Given the closed left-invariant subspace of L2(N),
H = P−1(H), such that

H =

∫ ⊕

I

L2
(
Rd

)
⊗C-span{u1 (λ) , . . . ,um(λ) (λ)} dµ (λ) .

Assuming that {u1(λ), . . . ,um(λ)(λ)} is an orthonormal set and (L|H,
H) is admissible, an admissible vector η satisfies the following criteria:
∥η∥2 =

∫
I
m(λ) dµ(λ).

Proof. See Theorem 4.22 in [3]. �

3. Results. In this section, we will provide solutions to the problems
mentioned in Question 1.1, Question 1.2 and Question 1.3 in the
introduction of the paper. We start by fixing some notation which will
be used throughout this section. Let H = P−1(F) be a multiplicity-free
subspace of L2(N) such that

F =

∫ ⊕

I

L2
(
Rd

)
⊗ u dµ (λ) ,

and u is a fixed unit vector in L2(Rd). Recall that b = (b1, . . . , bd) and
q = (q1, . . . , qd).

Lemma 3.1. Let ϕ ∈ H be such that P(ϕ)(λ) = F (λ) ⊗ u almost
everywhere. Recall the matrix B(λ) as defined in (2.5). For almost
every linear functional λ ∈ I, F (λ) ∈ L2(Rd), and {πλ(γq,b)F (λ)}γq,b
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forms a multivariate Gabor system (2.1) of the type G(F (λ),Λ(λ))
such that Λ(λ) is a separable full rank lattice of the form Λ(λ) =
A(b)Zd ×B(λ)D(q)Zd. Furthermore, for almost every λ ∈ I,

Vol (Λ(λ)) =
| detB(λ)|

b1 · · · bn−2dq1 · · · qn−2d
.

Proof. Following our description of the irreducible representations of
N , we simply compute the action of the unitary irreducible representa-
tions restricted to the reduced quasi-lattice Γq,b. Given F (λ) ∈ L2(Rd),
and γq,b ∈ Γq,b, some simple computations show that

πλ (γq,b)F (λ) (x1, . . . , xd)

= e2πi⟨x
tr, B(λ)D(q)ktr⟩F (λ)

(
x1 −

n1
b1
, . . . , xd −

nd
bd

)
. �

Proposition 3.2. Let ϕ be a vector in H. If {L(γa,q,b)ϕ}γa,q,b∈Γa,q,b

is a Parseval frame, then for µ almost everywhere λ ∈ I, the following
must hold :

(1) {
∏n−2d

k=1

√
ak|detB(λ)|1/2πλ(γq,b)ϕ̂(λ) : γq,b ∈ Γq,b} forms a

Parseval frame in L2(Rd) ⊗ u ≃ L2(Rd).
(2) Vol (Λ(λ)) = det |A(b)B(λ)D(q)| ≤ 1.

Proof. Given any function ψ∈P−1(F), we have
∑

γa,q,b
|⟨ψ,L(γa,q,b)ϕ⟩|2

= ∥ψ∥2L2(N). We use the operator ˆ instead of P, and we define

L̂ = PLP−1.∑
γa,q,b

∣∣∣⟨ψ,L (γa,q,b)ϕ⟩L2(N)

∣∣∣2
=

∑
γa,q,b

∣∣∣∣ ∫
I

⟨
ψ̂ (λ) , L̂ (γa,q,b) ϕ̂ (λ)

⟩
HS

dµ (λ)

∣∣∣∣2s(3.1)

=
∑
γa,q,b

∣∣∣∣ ∫
I

⟨
ψ̂ (λ) , πλ (γa,q,b) ϕ̂ (λ)

⟩
HS

dµ (λ)

∣∣∣∣2.(3.2)
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Using the fact that in L2(I),{ n−2d∏
k=1

e2πi⟨mk,λk⟩
√
ak

: mk ∈ Z, (λ1, . . . , λn−2d, 0, . . . , 0) ∈ I

}
forms a Parseval frame in L2(I), we let r(λ) = |det(B(λ))|, and put

cγq,b
(λ) =

( n−2d∏
k

√
ak

)⟨
ψ̂ (λ) , πλ (γq,b) ϕ̂ (λ)

⟩
HS

r (λ) .

Equation (3.1) becomes∑
γa,q,b

∣∣∣⟨ψ,L (γa,q,b)ϕ⟩L2(N)

∣∣∣2
=

∑
γq,b

∑
m∈Zd

∣∣∣∣∫
I

n−2d∏
k=1

e2πiλk(mk/ak)
⟨
ψ̂ (λ) , πλ (γq,b) ϕ̂ (λ)

⟩
HS
dµ (λ)

∣∣∣∣2

=
∑
γq,b

∑
m∈Zd

∣∣∣∣ ∫
I

n−2d∏
k=1

e2πiλk(mk/ak)

√
ak

cγq,b
(λ) dλ

∣∣∣∣2.
Since cγq,b

is an element of L2(I), and because {
∏n−2d

k=1 (e2πi⟨mk,·⟩)/
√
ak :

mk ∈ Z} forms a Parseval frame,

(3.3)
∑
γa,q,b

∣∣∣⟨ψ,L (γa,q,b)ϕ⟩L2(N)

∣∣∣2 =
∑
γq,b

∥cγq,b
∥2.

Next, put a =
∏n−2d

k=1

√
ak. Then (3.3) yields∑

γa,q,b

∣∣∣⟨ψ,L (γa,q,b)ϕ⟩L2(N)

∣∣∣2
=

∑
γq,b

∫
I

∣∣∣a⟨ψ̂ (λ) , πλ (γq,b) ϕ̂ (λ)
⟩
HS

r (λ)
∣∣∣2 dλ

=

∫
I

∑
γq,b

∣∣∣a⟨ψ̂ (λ) , πλ (γq,b) ϕ̂ (λ)
⟩
HS

√
r (λ)

∣∣∣2 r (λ) dλ

=

∫
I

∑
γq,b

∣∣∣a⟨ψ̂ (λ) , πλ (γq,b) ϕ̂ (λ)
⟩
HS
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× |det (B (λ))|1/2
∣∣∣2dµ (λ) .

Due to the assumption that L(Γa,q,b)ϕ is a Parseval frame, we also have∑
γa,q,b

∣∣∣⟨ψ,L (γa,q,b)ϕ⟩L2(N)

∣∣∣2 =

∫
I

∥∥∥ψ̂ (λ)
∥∥∥2
HS

dµ (λ) .

Thus,∫
I

(∑
γq,b

∣∣∣∣a⟨ψ̂ (λ) , πλ (γq,b) ϕ̂ (λ)
⟩
HS

|det (B (λ))|1/2
∣∣∣∣2 − ∥∥∥ψ̂ (λ)

∥∥∥2
HS

)
dµ (λ) = 0.

So, for µ-almost everywhere, λ ∈ I,

(3.4)
∑
γq,b

∣∣∣⟨ψ̂ (λ) ,a |det(B (λ))|1/2 πλ (γq,b) ϕ̂ (λ)
⟩
HS

∣∣∣2 =
∥∥∥ψ̂ (λ)

∥∥∥2
HS

.

However, we want to make sure that equality (3.4) holds for all
functions in a dense subset of H. For that purpose, we pick a countable

dense set Q ⊂ H such that the set {f̂(λ) : f ∈ Q} is dense in L2(Rd)⊗u
for almost every λ ∈ I. For each f ∈ Q, equality (3.4) holds on I−Nf

where Nf is a null set dependent on the function f . Thus, for all
functions in Q equality (3.4) is true for all λ ∈ I−

∪
f∈Q(Nf ). Finally,

the map

ψ̂(λ) 7−→
⟨
ψ̂ (λ) , πλ (γq,b) |det (B (λ))|1/2 √a1 · · · an−2d ϕ̂ (λ)

⟩
HS

defines an isometry on a dense subset of L2(Rd)⊗u almost everywhere,
completing the first part of the proposition. Next, the second part of
the proposition is simply true by the density condition of Gabor systems
yielding to Parseval frames. See [5, Lemma 3.2]. �

Lemma 3.3. For any fixed λ ∈ Σ, for our class of groups, | detB(λ)| =
(detV (λ))1/2.

Proof. For a fixed λ ∈ Σ, we recall the definition of the corresponding
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matrix V (λ) given in (2.2). Some simple computations show that

V (λ) =

(
0 B (λ)

−B (λ) 0

)
.

detV (λ) = detB(λ)2 which is non-zero since V (λ) is a non singular
matrix of rank 2d. It follows that | detB(λ)| = (detV (λ))1/2. �

Now, we are in a good position to start making progress toward the
answer of the first question.

Definition 3.4. Let r(λ) = | detB(λ)| and a = (a1, . . . , an−2d), we
define

(3.5) s = sup
λ∈I

{r (λ)} .

Notice that s is always defined since I is bounded.

Lemma 3.5. For µ almost everywhere λ ∈ I, there exists some b =
(b1, . . . , bd) and q = (q1, . . . , qd) such that vol (A(b)Zd × B(λ)D(q)Zd)
≤ 1.

Proof. It suffices to pick b = b(s) = (s1/d, . . . , s1/d) and q =
(q1, . . . , qd) such that

1

q1 · · · qd
≤ 1. �

Lemma 3.6. For µ almost everywhere λ ∈ I, if q is chosen such that
1/q1 · · · qd ≤ 1, there exists g(λ) ∈ L2(Rd) such that the Gabor system
G(g(λ), A(b(s))Zd × B(λ)D(q)Zd) forms a Parseval frame. Further-
more,

∥g (λ)∥2 = |detA (b(s)) detB (λ) detD(q)| .

Proof. By [5, Theorem 3.3] and Lemma 3.5, the density condition
stated also in Lemma 2.4 implies the existence of the function g(λ) for
µ-almost every λ ∈ I. �

Lemma 3.7. Let u be a unit norm vector in L2(Rd). If there exists
some vector η such that {L(γa,q,b)η}γa,q,b∈Γa,q,b

forms a Parseval frame
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in H = P−1(
∫ ⊕
I

(L2(Rd) ⊗ u) dµ(λ)), then µ(I) ≤ (q1 · · · qd)(b1 · · · bd)
(a1 · · · an−2d).

Proof. Put a =
∏n−2d

k=1

√
ak. Under the assumptions that there exist

a quasi-lattice Γa,q,b and a function η such that {L(γa,q,b)η}γa,q,b∈Γa,q,b

forms a Parseval frame,
√

detB(λ)a (Pη)(λ) forms a Parseval frame

in L2(Rd) ⊗ u for µ-almost every λ ∈ I. Thus,

∥(Pη) (λ)∥2HS =
1

(q1 · · · qd) (b1 · · · bd)a2
.

Computing the norm of the vector η, we obtain

∥η∥2L2(N) =

∫
I

∥(Pη) (λ)∥2HS dµ (λ)

=

∫
I

1

(q1 · · · qd) (b1 · · · bd)a2
dµ (λ)

=
µ (I)

(q1 · · · qd) (b1 · · · bd) (a1 · · · an−2d)
.

Since L is a unitary representation, {L(γa,q,b)η}γa,q,b∈Γa,q,b
is a Parseval

frame. Thus, ∥η∥2 ≤ 1 and µ(I) ≤ (q1 · · · qd)(b1 · · · bd)(a1 · · · an−2d).
�

Proposition 3.8. Let H be a closed left-invariant subspace of L2(N)

such that H = P−1(F) where F =
∫ ⊕
I
L2(Rd) ⊗ u dµ(λ). Let η ∈ H be

such that

(3.6) η̂ (λ) =
g (λ) ⊗ u∏n−2d

k=1

√
ak

√
det |B (λ) |

and the Gabor system G(g(λ), A(b(s))Zd×B(λ)D(q)Zd) forms an Par-
seval frame for µ almost everywhere λ ∈ I. The following must hold :

(1) {L(γa,q,b(s))η}γa,q,b(s)
is a Parseval frame in H.

(2) {L(γa,q,b(s))η}γa,q,b(s)
is an ONB in H if

(3.7) µ(I) =

∏n−2d
k=1 (ak)

| detD(q) detA(b(s))|
.

Proof. For part (1), since the density condition can be easily met
for some appropriate choice of q, the existence of the function g(λ)
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generating the Gabor system is guaranteed by Lemma 2.4. Assume

that η is picked as defined in (3.6). Let a =
∏n−2d

k=1

√
ak.∑

γa,q,b(s)∈Γ

∣∣∣⟨ψ,L (
γa,q,b(s)

)
η
⟩
L2(N)

∣∣∣2
=

∫
I

∑
γq,b(s)

∣∣∣∣⟨ψ̂ (λ) , πλ
(
γq,b(s)

)
a

× |det (V (λ))|1/4 η̂ (λ)

⟩
HS

∣∣∣∣2dµ (λ)

=

∫
I

∑
γq,b(s)

∣∣∣∣⟨ψ̂ (λ) ,
a|det(B(λ))|1/2πλ(γq,b(s))g(λ)⊗u√

| detB(λ)|a

⟩
HS

∣∣∣∣2 dµ (λ)

=

∫
I

∑
γq,b(s)

∣∣∣⟨ψ̂ (λ) , πλ
(
γq,b(s)

)
g (λ) ⊗ u

⟩
HS

∣∣∣2 dµ (λ)

=

∫
I

∥∥∥ψ̂ (λ)
∥∥∥2
HS

dµ (λ)

= ∥ψ∥2L2(N) .

In order to prove the second part, it suffices to check that ∥η∥2 = 1
using the fact that, if G(g(λ), A(b)Zd×B(λ)D(q)Zd) is a Parseval frame
in L2(Rd), then ∥g(λ)∥2 = | detB(λ) det(D(q)) detA(b(s))|. Finally,
combining the fact that L is unitary and that the generator of the
Parseval frame is a vector of norm 1, we obtain (3.7). �

All of the preceding lemmas and propositions lead to the following
theorem.

Theorem 3.9. Given H = P−1(F) a closed band-limited multiplicity
free left-invariant subspace of L2(N), there exist a quasi-lattice Γ ⊂ N
and a function f ∈ H such that L(Γ)f forms a Parseval frame in H.

The second question is concerned with finding some necessary con-
ditions for the existence of a single Parseval frame generator for any
arbitrary band-limited subspace of L2(N). For this purpose, we will
now consider all of the left-invariant closed subspaces of L2(N). Let
K be a left-invariant closed subspace of L2(N). A complete character-
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ization of left-invariant closed subspaces of L2(G) where G is a locally
compact type I group is well known and available in the literature. Re-

ferring to [3, Corollary 4.17], P(K) =
∫ ⊕
Σ
L2(Rd)⊗Pλ(L2(Rd)) dµ(λ),

where Pλ is a measurable field of projections onto L2(Rd). We define
the multiplicity function by m : Σ → N∪{0,∞} and m(λ) = rank (Pλ).
We observe that there is a natural isometric isomorphism between P(K)

and
∫ ⊕
Σ
L2(Rd) ⊗Cm(λ)dµ(λ).

Proposition 3.10. If there exists some function ϕ ∈ K such that
{L(γa,q,b)ϕ}γa,q,b

forms a Parseval frame, then for almost all λ ∈ I,

| detB(λ)m(λ)| ≤
∏d

i=1(biqi).

Proof. Recall that

a =

n−2d∏
k=1

√
ak.

By assumption, given any function f ∈ H,
∑

γa,q,b
|⟨f, L(γa,q,b)ϕ⟩|2 =

∥f∥2. We have f̂(λ) = Σ
m(λ)
k=1 u

k
f (λ) ⊗ ek(λ) and, similarly, ϕ̂(λ) =

Σ
m(λ)
k=1 u

k
ϕ(λ) ⊗ ek(λ) such that ukf (λ), ukϕ(λ), ek(λ) ∈  L2(Rd), and

||ek(λ)|| = 1 for almost every λ ∈ I. Next, we identify L2(Rd) ⊗
Cm(λ) with

⊕m(λ)
k=1 L2(Rd) in a natural way almost everywhere. For

example, under such identification, Σ
m(λ)
k=1 u

k
f (λ) ⊗ ek(λ) is identified

with (u1f , · · · , u
m(λ)
f ). Thus, almost everywhere, by following similar

steps as seen in the proof of Proposition 3.2, the system{
a
√
|detB (λ)|πλ (γq,b) ϕ̂ (λ)

}
γq,b

forms a Parseval vector-valued Gabor frame, also called a Parseval
superframe, for almost every λ ∈ I in L2(Rd) ⊗ Cm(λ). Since we
have a measurable field of Gabor systems, using the density theorem
of super-frames ([4, Proposition 2.6]), up to a set of measure zero, we
have | detB(λ) detA(b) detD(q)| ≤ 1/(m(λ)), and | detB(λ)m(λ)| ≤∏d

i=1(biqi). �

The following proposition gives some conditions which allow us to
provide some answers to Question 3.
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Proposition 3.11. Let K be a band-limited subspace of L2(N) such
that

P (K) =

∫ ⊕

I

L2
(
Rd

)
⊗Cm(λ)dµ (λ) .

If ϕ ∈ K is a continuous wavelet such that {L(γa,q,b)ϕ} forms a
Parseval frame, then m(λ) ≤ 1/(a2|detB(λ)|) almost everywhere and
∥ϕ∥2 ≤

∫
I
(b1 · · · bd q1 · · · qd) dλ.

Proof. Assume there exists a function ϕ which is a continuous
wavelet such that {L(γa,q,b)ϕ}γa,q,b

forms a Parseval frame. The system{
a |detB (λ)|1/2 πλ (γq,b) ϕ̂ (λ)

}
γq,b

forms a Parseval frame for almost every λ ∈ I for the space L2(Rd) ⊗
Cm(λ). Thus, we have ∥a| detB(λ)|1/2ϕ̂(λ)s∥2 ≤ 1, and∥∥∥ϕ̂ (λ)

∥∥∥2 = m (λ) ≤ 1

a2 |detB (λ)|

by the admissibility of ϕ and Lemma 2.5. By the density condi-
tion of Gabor superframes (see [4, Proposition 2.6]), |detB(λ)detA(b)
detD(q)| ≤ 1/m(λ) almost everywhere. Furthermore, because ϕ is a
continuous wavelet,∥∥∥ϕ̂ (λ)

∥∥∥2 = m (λ) ≤ 1

|detB (λ) detA (b) detD (q)|
.

As a result,

∥ϕ∥2 =

∫
I

∥∥∥ϕ̂ (λ)
∥∥∥2 |detB (λ)| dλ

=

∫
I

m (λ) |detB (λ)| dλ

≤
∫
I

dλ

|detA (b) detD (q)|

=

∫
I

(b1 · · · bdq1 · · · qd) dλ. �
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Theorem 3.12. Let H be a multiplicity-free band-limited subspace of

L2(N) such that P(H) =
∫ ⊕
S

(L2(Rd) ⊗ u) dµ(λ) and

S =

{
λ ∈ I :

|detB (λ)|
b1 · · · bdq1 · · · qd

≤ 1

}
with the following additional restriction on the quasi-lattice Γa,q,b,

b1 · · · bdq1 · · · qda1 · · · an−2d = 1.

H admits a continuous wavelet ϕ which is discretizable by Γa,q,b in the
sense that the operator Dϕ : H → l2(Γa,q,b) defined by

Dϕψ (γa,q,b) = ⟨ψ,L (γa,q,b)ϕ⟩

is an isometric embedding of H into l2(Γa,q,b). Additionally, the dis-
cretized continuous wavelet generates an orthonormal basis if µ(S) = 1.

Proof. First, we start by defining a function ϕ such that P(ϕ)(λ) =
uϕ(λ) ⊗ u for almost every λ ∈ S. If we want to construct ϕ such that
L(γa,q,b)ϕ is a Parseval frame for H, it suffices to pick uϕ(λ) such that
for almost every λ ∈ S,

uϕ (λ) =
g (λ)

(a1 · · · an−2d |detB (λ)|)1/2

and the Gabor system G(g(λ), A(b)Zd × B(λ)D(q)Zd) generates a
Parseval frame in L2(Rd). Since

|detB (λ)|
b1 · · · bdq1 · · · qd

≤ 1,

the density condition is met almost everywhere and the existence of
the measurable field of functions g(λ) generating Parseval frames is
guaranteed by Lemma 2.4. To ensure that ϕ is a continuous wavelet,
then we need to check that for almost all λ ∈ S, ∥uϕ(λ)∥2 = 1. With
some elementary computations, we have

∥uϕ (λ)∥2 =
|detB (λ)|

b1 · · · bdq1 · · · qda1 · · · an−2d |detB (λ)|

=
1

b1 · · · bdq1 · · · qda1 · · · an−2d

= 1.
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Finally, if ϕ is an orthonormal basis, then ∥ϕ∥2 = µ(S) = 1. This
completes the proof. �

4. Examples.

Example 4.1. We consider the Heisenberg group realized as N =
PoM where P = expRZ expRY and M = expRX with the following
non-trivial Lie bracket: [X,Y ] = Z.

We have P(L2(N)) =
∫ ⊕
R∗ L

2(R) ⊗ L2(R)|λ| dλ. Consider for
nonzero positive real numbers a, q, b, the quasi-lattice

Γa,q,b = exp

(
1

a
Z

)
Z exp

(
1

q
Z

)
Y exp

(
1

b
Z

)
X,

and the reduced quasi-lattice Γq,b = exp((1/q)Z)Y exp((1/b)Z)X. Let

H (a) = P−1

(∫ ⊕

(0,a]

L2 (R) ⊗ χ(0,1] |λ| dλ
)

be a left-invariant multiplicity-free subspace of L2(N). Now put b = a,
and choose q such that 1/q ≤ 1. By the density condition, there
exists for each λ ∈ (0, a] a function g(λ) such that the Gabor system
G(g(λ), (1/a)Z× (|λ|/q)Z) forms a Parseval frame. For each λ, fix such
a function g(λ), and let η ∈ H(a) be such that

(Pη) (λ) =
g (λ)√
a |λ|

⊗ χ[0,1].

It follows that, as long as q is chosen such that 1/q ≤ 1, L(Γa,q,a)η
forms a Parseval frame for H(a). If we want to form an orthonormal
basis generated by η, according to (3.7), we will need to pick q such
that q = 1/2. However, this gives a contradiction, since 1/q = 2 > 1.
Thus, there is no orthonormal basis of the form L(Γa,q,a)η.

Example 4.2. Let N be a nilpotent Lie group with Lie algebra
spanned by the basis {Z1, Z2, Y1, Y2, X1, X2} with the following non-
trivial Lie brackets [X1, Y1] = Z1, [X2, Y2] = Z1, [X1, Y2] = [X2, Y1] =
Z2.
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Let H be a left-invariant closed subspace of L2(N),

I={(λ1, λ2, 0, . . . , 0)∈R6 : |λ21 − λ22| ̸= 0, 0≤λ1≤2, 0≤λ2≤3},

with Plancherel measure dµ(λ1, λ2) = |λ21 − λ22|dλ1dλ2 and

P (H) =

∫ ⊕

I

(
L2

(
R2

)
⊗ χ[0,1]2

)
dµ(λ1, λ2).

Since s = 9, we define the quasi-lattice,

Γ(2,3),(1,1),(3,3)

= exp
Z

2
Z1 exp

Z

3
Z1 expZY1 expZY2 exp

Z

3
X1 exp

Z

3
X2.

Thus, there exists a function ϕ ∈ H such that L(Γ(2,3),(1,1),(3,3))ϕ forms
a Parseval frame. However, since µ([0, 2] × [0, 3]) = 46/3 ̸= 54, by
(3.7) there is no orthonormal basis of the type L(Γ(2,3),(1,1),(3,3))ϕ.
In fact, the norm of the vector ϕ can be computed to be precisely
(23/81)1/2. Since the multiplicity condition in Proposition 3.11 fails in
this situation, there is no continuous wavelet which is discretizable by
the lattice Γ(2,3),(1,1),(3,3).

Example 4.3. Let N be a nine-dimensional nilpotent Lie group with
Lie algebra spanned by the basis {Zi, Yj , Yk}1≤i,j,k≤3 with the following
non-trivial Lie brackets: [Y1, X1] = [Y3, X2] = [Y2, X3] = Z1, [Y2, X1] =
[Y1, X2] = [Y3, X3] = Z2 and [Y3, X1] = [Y2, X2] = [Y1, X3] = Z3.

The Plancherel measure is

dµ(λ1, λ2, λ3) = | − λ31 − λ32 + λ1λ2λ3 − λ33| dλ1 dλ2 dλ3.

Assume that H is a multiplicity-free subspace of L2(N) with spectrum
S = {(λ1, λ2, λ3, 0, . . . , 0) ∈ R9 : | − λ31 − λ32 + λ1λ2λ3 − λ33| ≤
1, | − λ31 − λ32 + λ1λ2λ3 − λ33| ̸= 0} ∩ I, and

I = {(λ1, λ2, λ3, 0, . . . , 0) ∈ R9 :

0 ≤ λi ≤ 1, | − λ31 − λ32 + λ1λ2λ3 − λ33| ̸= 0}.

Put a = b = q = (1, 1, 1). By Theorem 3.12, the space H admits a
continuous wavelet which is discretizable by Γa,b,q.
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