DIHEDRAL GROUP FRAMES WHICH ARE MAXIMALLY
ROBUST TO ERASURES

VIGNON OUSSA

ABSTRACT. Let n be a natural number larger than two. Let Dy, = (r,s:
r" = 5% = e,srs = r"71) be the Dihedral group, and x an n-dimensional
unitary representation of Da,, acting in C™ as follows. (k(r)v)(j) =v((j-1)
mod n) and (k(s)v)(j) = v((n-j) mod n) for v = (vg,-,vp-1) € C". For
any representation which is unitarily equivalent to s, we prove that when
n is prime there exists a Zariski open subset E of C" such that for any
vector v € E/, any subset of cardinality n of the orbit of v under the action
of this representation is a basis for C". However, when n is even there is
no vector in C™ which satisfies this property. As a result, we derive that
if n is prime, for almost every (with respect to Lebesgue measure) vector
v in C" the I'-orbit of v is a frame which is maximally robust to erasures.
We also consider the case where 7 is equivalent to an irreducible unitary
representation of the Dihedral group acting in a vector space H, € {(C, (CQ}
and we provide conditions under which it is possible to find a vector v € H,
such that 7 (I") v has the Haar property.

1. INTRODUCTION

Let § be a set of m > n vectors in an n-dimensional vector space K" over a
field K € {R,C}. We say that § has the Haar property if any subset of § of

Date: September 13, 2014.
2000 Mathematics Subject Classification. 15A15,42C15.
Key words and phrases. Linearly independent frames, Haar property.



2 V. OUSSA

cardinality n is a basis for K”. Let

00 - 01 1 .
10 00 exp (%) |
T=10 1 ~ : ¢ |and M= exp(%)
C o 000 -
0 - 0 10 exp(%i(:fl))

be two invertible matrices with complex entries. The group generated by these
matrices is isomorphic to the finite Heisenberg group

1 m k
Heis(n) =31 0 1 @ |:(k,m,l)€ZyxZyp*x 7y
0 0 1

which is a nilpotent group. It is well-known that (see [6]) if n is prime then
there exists a Zariski open set F of C™ such that for every vector v € F, the set
{M'T*v :1 <1,k <n} has the Haar property. This special property has some
important application in the theory of frames. We recall that a frame (see
[3]) in a Hilbert space is a sequence of vectors (uy),., with the property that
there exist constants a,b which are strictly positive such that for any vector u
in the given Hilbert space, we have
(1) < 3 o ) < b .

kel
The constant values a, b are called the frame bounds of the frame. It can be
derived from (1.1) that a frame in a finite-dimensional vector space is simply a
spanning set for the vector space. Thus, every basis is a frame. However, it is
not the case that every frame is a basis. Indeed, frames are generally linearly
dependent sets. Let m be a unitary representation of a group G acting in a
Hilbert space H,. Let v € H,. Any set of the type 7(G)v which is a frame is
called a G-frame.

A frame (x1),.; in an n-dimensional vector space is maximally robust to
erasures if the removal of any [ < m —n vectors from the frame leaves a
frame (see [6], [3] Section 5.) Coming back to the example of the Heisen-
berg group previously discussed, it is proved in [6] that if n is prime then
the set {MJT*v : (k,7) € Z2} is maximally robust to erasures for almost every
(with respect to Lebesgue measure) v € C". In the present work, we consider
a variation of this example. The main objective of this paper is to prove that
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there exists a class of Dihedral group frames which are maximally robust to
erasures.

Let n be a natural number greater than two. Let Dy, be the Dihedral group
of order 2n. A presentation of the Dihedral group is:

Dy, = <r,s =5 =e, 8515 = r”_1>

where e stands for the identity of the group. Next, we define a monomorphism
k: Dy, > GL (n,C) such that

0 0 - 01 10 - 0 0
10 - 00 00 - 01
(1.2) k(r)= 0 1 -~ = : |,k(s)=] : : =~ =~ 0
o w000 00 1 . :
0O - 0 10 01 0 0

Clearly « is a finite-dimensional unitary representation of the Dihedral group
which is reducible. Put

A=k(r) and B =k(s).

Next, let T be a finite subgroup of GL (n, C) which is generated by the matrices
A and B. We are interested in the following questions.

Problem 1 Let a be a unitary representation of the Dihedral acting in a
Hilbert space H,. Suppose that « is unitarily equivalent to x. Under which con-
ditions is it possible to find a vector v € H, such that the set {a (z)v:x € Dy, }
has the Haar property?

Problem 2 Let 7 be a unitary irreducible representation of Ds, acting in
a finite-dimensional Hilbert space H,. Under which conditions is it possible
to find a vector v € H, such that 7(Dy,)v = {7 (x)v:x € Dy,} has the Haar
property?

To reformulate the problems above, put D, = {x1,--,Z2,}. Let a be a
representation of the Dihedral group acting in H, which is either irreducible
and unitary or is equivalent to k. We would like to investigate conditions
under which it is possible to find

v=_vo,  ,Vdim(H.)-1 )€ CImH)
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such that every minor of order dim (H,) of the 2n x dim (H,,) matrix

(mlv)o (xlv)dimHa—l

($2nv)0 (332nv)dimHa—1

is nonzero. Here is a summary of the main results of the paper.

Theorem 1. Let n be a natural number larger than two, and let o be a repre-
sentation which s equivalent to k. The following holds true:

(1) If n is even then it is not possible to find a vector v € H, such that
a(Dayy)v has the Haar property.

(2) If n is prime then there exists a Zariski open set E c H, such that
for any v € E, a(Da,)v has the Haar property. In other words, for
any v € E, a(Day,)v is a frame in C* which is mazimally robust to
erasures.

Theorem 2. Let 7 be an irreducible representation of the Dihedral group acting
m a vector space H,.

(1) If T is a character then for any nonzero complex number z, T (Day,) 2
has the Haar property.
(2) If T is not a character and if n is prime then for almost every vector v
in H,, 7 (Da,) v has the Haar property.
(3) If T is not a character and if n is even then there does not exist a vector
v in H, such that T (Dsy,)v has the Haar property.
(4) Suppose that n is a composite odd natural number.
(a) There exists an irreducible representation 7' of Da, acting in H.
such that for any vector in v in H., 7' (Day,)v does not have the
Haar property.
(b) There exists an irreducible representation " of Doy, acting in H.»
such that for almost every vector in v in Hyn, 7" (Da,) v has the
Haar property.

Since the discrete Fourier transform plays a central role in the proofs of the
results above, it is worth pointing out that, constructions of Parseval frames
which are maximally robust to erasures using discrete Fourier transforms have
also been produced in [2].

Our work is organized as follows. In the second section, we recall some well-
known facts about Fourier analysis on finite abelian groups, and the Laplace’s
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Expansion Formulas which are all crucial for the proofs of the main results.
The main results of the paper (Theorem 1, and Theorem 2) are proved in
the third section of the paper. Finally, examples are computed in the fourth
section.

2. PRELIMINARIES

Let us start by fixing some notations. Given a matrix M, the transpose of
M is denoted M. The determinant of a matrix M is denoted by det(M) or
|M|. The kth row of M is denoted rowy, (M) and similarly, the kth column of
the matrix M is denoted coly (M) .

Let GG be a group with a binary operation which we denote multiplicatively.
Let E be a subset of G. The set E~! is a subset of G which contains all inverses
of elements of E. More precisely, E~! = {a7!:a € E}. For example, let G be
the cyclic group Z,. Then given any subset E of Z,,

E7'={(n-k)modn:keFE}.

Let GG be a group acting on a set S. We denote this action multiplicatively.
For any fixed element s € S, the G-orbit of s is described as Gs = {gs: g€ G}.

Let « be a unitary representation of a group G acting in a Hilbert space
H,,. That is, « is a homomorphism from G into the group of unitary matrices
of order dim¢ (H, ). We say that « is an irreducible representation of G if and
only if the only subspaces of H, which are invariant under the action of «
are the trivial ones. For example a unitary character (a homomorphism from
G into the circle group) is an irreducible unitary representation. Two unitary
representations «, o’ of a group G acting in H,, H, respectively are equivalent
if there exists a unitary map U : H, - H,/ such that

Ua(z)U ™t =a'(z) forallzeG.

We say that U intertwines the representations o and o'. Let M be a matrix.
Next, let z € C. The complex conjugate of z is written as Z. The cardinality of
a set S is denoted card (S). Throughout this paper, we shall always assume
that n is a natural number larger than two. Following the discussion above,
the following is immediate:

Lemma 3. Let a,a’ be two equivalent unitary representations of a group G.
Let U be a unitary map which intertwines the representations o, a’. Let v €
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H,. Then o (G) v has the Haar property if and only if o' (G) Uv has the Haar
property.
2.1. Fourier Analysis on Z,. Let Z, ={0,1,---,n — 1} . We define the Hilbert
space

?(Z,)={f:Z,~C}
which is the set of all complex-valued functions on 7Z, endowed with the fol-
lowing inner product:

(6,) = ZZ ¢ (z) Y (x) for ¢, € 1*(Z,).

The norm of a given vector ¢ in [? (Z,,) is computed as follows:

012z, = (6.0)"
We recall that the discrete Fourier transform is a map F : 12 (Z,) - 12 (Zy,)
defined by
2miké
n

1
(FO) ) =5 3 6 (W) exp (=0 ) for 6 €2 (Z,).
keZn
The following facts are also well-known (see [8]). Firstly, the discrete Fourier
transform is a bijective linear operator. Secondly, the Fourier inverse of a
vector ¢ is computed as follows:

Fo (k) = # 2 S0(5)6’)(13(_272%)'

§€ln

Finally, the Fourier transform is a unitary operator. More precisely, given
o, €l?(Zy,) , we have

(9. 0) = (Fo, Fu).
We shall need the following lemma which is proved in [4].

Lemma 4. Let F be the matriz representation of the Fourier transform. If n
1s prime then every minor of F is nonzero.

We recall that

0 0 0 1 10 - 00

10 00 0 0 0 1

A= 0 1 : ,and B=| 0
00 0 0 1 :

0 0 10 01 0 -0
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Identifying 12 (Z,) with C" via the map
V- ( v(0) - wv(n-1) )T7
we may write
Av(j)=v((j-1)modn) and Bv(j)=v((n—-j)modn).

Next, with some formal calculations, it is easy to check that the following facts
hold true:

Lemma 5. }7’20:; any & € 2y, we have (FBv)(§) = (Fv) ((n-¢&)modn) and
(FAv) (§) =™ (Fv) (£).

From Lemma 5, we obtain the following. Let F be the matrix representation
of the Fourier transform and define

A=FAF ! and B=FBF!'=B.

Then
L 10 00
en . o0 - 01
A= en andB=| : ¢ .~ 0
g O o0 1 . :
627”(:—1) 0 1 0 . 0

2.1.1. Laplace’s Expansion Theorem. The following discussion is mainly taken
from Chapter 3, [5]. Let X be a square matrix of order n.

Definition 6. A minor of X s the determinant of any square sub-matrix Y
of X. Let |Y| be an m-rowed minor of X. The determinant of the sub-matrix
obtained by deleting from X the rows and columns represented in'Y is called the
complement of |Y|. Let |Y| be the m-rowed minor of X in which rows iy, iy
and columns jq,--+,)m are represented. Then the algebraic complement, or
cofactor of |Y| is given by

(_1)22":1 i+ Yge Jk |Z|
where |Z| is the complent of |Y].

According to Laplace’s Expansion Theorem (sce 3.7.3, [5]) a formula for
the determinant of X can be obtained by following three main steps.

(1) Select any m rows (or columns) from the matrix X.
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(2) Collect all m-rowed minors of X found in these m rows (or columns).
(3) The determinant of X is equal to the sum of the products of each of
these minors and its algebraic complement.

To be more precise, let X = (X,-&)lg,jgn be a square matrix of order n. Let
T (n,p) be the set of all p-tuples of integers: s = (s1,-,5,) where 1 <51 < 85 <
-+ <8y <m. Given any s,t €T (n,p), we let X (s,t) be the sub-matrix of order
p of A such that

X (8,1);5= Xst;-

J
Next, let X (s,t)° be the complementary matrix of X (s,¢) which is a matrix
of order n — p obtained by removing rows si,---, s, and columns ?y,---,¢, from
the matrix A. Define
p
|s| = > sp.
k=1

According to Laplace’s Expansion Theorem, for any fixed t € T (n,p),
(2.1) det (X) = 3 (=) det (X (s,)) det (X (s,1)°).

s€T'(n,p)

3. PROOF OF MAIN RESULTS

Proposition 7. Assume that n > 2 and is even. Given anyy € ', the following
holds true:

n-2 n-2
ZZ:,}/A2I<: i7A2kB
k=0 k=0

In other words, there exists a subset {7V, , -, Y, } of I' of cardinality n which
1s linearly dependent over C.

Proof. Let I ={0,2,-,n-2}. Put w=e"n. Then
n-2
n-2 kio 1 n—2
2 2, 2k
AF =SS A%k Yo W

22 o(n-1)k
2 n—
2o W

Now, we claim that Y ,.; A* is a diagonal matrix with only two nonzero entry.

n-2
To see that this holds, it suffices to observe that (Zkﬁo A%) = 5 and for
1,1
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J#1
n-2 n-2 . .
iA% :iwm:{g ?f ji%
k=0 k=0 3 i j=3
n-2
Moreover, for j # [, (ijo A%) =0. Next
3l
(3.1)
2 an2 2mi(2k) 1
Lo € " L0 0 00
> AFB= 0 A : :
kel : 0 0 1
n-2 s n—
0 0 T 62 (k) (n-1) 10
(3.2)
2 n=2  9ri(2k)
0 0 e Y plg €
- : 0
0 Zlﬁ 627ri(2kn)(n—2) ‘
n-2 T n—
B¢ 0 0

From (3.1), and (3.2), it is easy to see that the entry
an2
Z ¢ for 1 <j<n-1
k=0

is the only possible nonzero element of col;,; (¥ ; A¥B) . Thus, for any index
J, (0<j <n-1) the complex number Z,:j";z ZE diagonal entry of the
matrix Sy, AFB if and only if j = 2, or j = 0. Therefore, ¥,2, A% = ¥, A%B
and this implies that Z,ﬁ F-1A2% = Z,ﬁ F-1A2%B. Since F-'A = AF-! and
F-'B = BF-! then

n-2 n-2
2 2

(33) S A% =Y A%,
k=0 k=0
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Finally, given any 7 € I', by multiplying (3.3) on the left by v we obtain the
desired result. U

Corollary 8. If n is even then it is not possible to find a vector v e C* such
that I'v has the Haar property.

Proof. Accordmg to Proposmon 7, any vector v is in the kernel of the linear
operator Zk 2, A%k — Z A% B. Thus, for any fixed vector v € C", the set of

vectors 5 5
}U{A%BUIOSkSnQ }

is linearly dependent. U

{A%U:ngﬁn

Lemma 9. Assume that n is an odd natural number greater than one. Let
m € N such that 1 < m < n. Let Z,, = {0,1,--m—-1}yu{m,--n-1}. Let
By €{0,1,--;m—1},By € {m,--,n -1} such that card (B;) = card (By) > 1.
Then it is not possible for B{* = By and B;' = Bs.

Proof. We shall prove this lemma by cases. For the first case, let us suppose
that card (By) = card (Bs) = 1. Since B; and By are disjoint, then either By
contains a non-trivial element or Bs contains a non-trivial element. In either
case, it is not possible for B;! = By and B;! = By. This is due to the fact that
when n is odd, the only element which is equal to its additive inverse (mod n)
is the trivial element 0. For the second case, let us suppose that m < 3 and
card (By) = card (By) > 1. Then, there is at least one non-trivial element of
Zy in the set By. If By = By then there exist k, k" € By such that k =n - &'
Now, since k, k' <m—1thenn=k+k <2(m-1)<n -2 and this is absurd.
For the third case, let us suppose that m > 4 and card (B;) = card (B;) > 1. If
B;! = By then there must exist k, k" € By such that k+ k' = n, and k, k' > m.
Thus, n = k+ k' >2m >n and this is absurd as well. 0

Example 10. Let Z; = {0,---,6}. Put m = 3. Now let By = {0,1} and B, =
{3,4} . Then B;' = By. However, B;' ={0,6} # By.

Remark 11. We remark here that Lemma 9 fails when n is even. For example,
let us consider the finite cyclic group of order four. Let m =2, By = {0} and
By ={2}. Then clearly, B{' = By and B;' = Bs.

Define the group
S=FIF"'={FyF':yel}
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which is also isomorphic to the Dihedral group. We recall that for any vector
v e C", we write

T
UZ(’UO (% ’Un_l) .

For any subset A = {7g,,**, Y&, } of the group ¥, we consider the corresponding
matrix-valued function defined on C" as follows.

i (Vky f)o (’Yklf)n—l
op: fr : = : :
Vien S Ve l)o = (Ven)a

We acknowledge that the proof of the following proposition was partly inspired
by the proof given for Theorem 4, [6].

Proposition 12. Let A be any subset of ¥ of cardinality n. If n is prime
then there exists a Zariski open set EE c C" such that given any vector f € E,
det dp (f) is a non-vanishing homogeneous polynomial.

Proof. Put w = e+, There are several cases to consider. For the first case, let

us suppose that there exist natural numbers m,p such that m + p = n, such
that

A={AM . Ak ADB, ... APB}

and

(3.4)
fO wk1 fl w(m—l)k1 fmfl wmlﬂ fm w(’n—2)k1 fn72 w(’n—l)k1 fnfl
fO wkz ,fl w(m—l)kz fmfl wmk‘gfm w(n—?)kz ,fan w(n—l)kz fnfl

5 ~ fO kafl w(m—l)km fm—l wmk’mfm w(n—Q)km fn—2 w(n_l)kmfn—l

A (f) - fO wﬁl fn—l w(m—l)Z1 fnf(mfl) wmfl fn—m w(n—Z)fl f2 w(n_l)fl fl

fo wlfuy o wmDEL Gy W fy e wTDe w=De f)
fO ng:fn—l W(mil)el"fn—(m—l) wmep.fn—m W(nié)epr W(nil‘)epfl
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Now, fix ¢ = (1,---,;m). We consider the transpose of d, (f) which is given by

fiooo I fio)
wkl fl e wk'm fl wzl fn—l ces wep fn—l
w(m—l)'kl fm—l w(m—l);cmfm_l w(m_l)gl'fni(mil) w(m—l)gp~fn7(m71)
wmkl fm wmkm fm wmél fn—m wmép fn—m
w(n-2)k1 fog o o(n-Dkm fos (-2 £ (-2t £
w(n—l)kl fnfl w(n—l)km fnfl w(n—l)fl fl w(n—l)lp fl

To avoid cluster of notation, put

T
My =(0a(f))" -
Applying Laplace’s Expansion Theorem (2.1) to My, we obtain

det (Mg)= > (=1)!"""det (M; (s,)) det (M (5,1))°) -
seT'(n,m)
For t = (1,---,m), M/ (t,t) is the matrix obtained by retaining the first m
rows and first m columns of the matrix M;. The matrix M, (¢,¢)° is a ma-
trix of order n —m = p which is obtained by deleting the first m rows and
the first m columns of My. Thus, for ¢t = (1,---,m), it is easy to see that

(1) det (M (¢,t)) det (M (£,1)°) is equal to

(3.5)
fO e fO wmzl fn_m ee wmzp fn_m
wkl fl ves wk'mfl I E
pa(f) = : : WD fy -
wm=1)k1 fm—l u’)(mfl)kmfm_l wn-1)t fl w(nfl)épfl

Using the fact that the determinant map is multi-linear, then (3.5) becomes

(3.6) pa (f) =ar (f)
where
1 1 wmfl wmfp
wkl wkm :
“ wn=2)ta ... H(n-2)f € C,

WDkt o Dk || oD . -1t
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and r (f) is the monomial given by
m-1 n-m
(3.7) r(f)=TIMTL
k=0 j=1

Using Chebotarev’s theorem (see Lemma 4), since n is prime and because
a is a product of minors of the discrete Fourier matrix, then a # 0 and the
polynomial py (f) is nonzero. Next, we remark that det (/) is a homogeneous
polynomial of degree n in the variables fy, -, f,_1 and can be uniquely written
as

n

det (My)= > aofg°-fori', where aq € C.

e |al=n

Regarding the formula above, we remind the reader that the multi-index « is
equal to (g, -+, an-1). To show that the polynomial det (M) is nonzero, it
suffices to find a multi-index « such that || =n and a, # 0. In order to prove

this fact, we would like to isolate a certain monomial of the type fi---f """ in

(3.8) det (My)= 3 (1) det (M (s,t)) det (M (s,1))°)

seT'(n,m)

and prove that its corresponding coefficient a, is non zero. The monomial in
question that we aim to isolate is 7 (f) which is defined in (3.7). We shall
prove that the corresponding coefficient in (3.8) to 7 (f) is just the complex
number @ which is described in Formula (3.6). First, it is easy to see that

r(H=T1 A I1 £

kel(s)  jel(s)®
where
I(s)={0<k<m-1} and I (s)°={1<k<n-m}.
Next for any s° € T'(n,m), let us suppose that s° # t. We may write s° =
(331,---,s§m) and
det (M (s°,t)) det (M (s°,1)°) = a"k E[ )ka(I_I)cfk

where a° € C and the sets I (s°) and I (s°)° are described as follows. There
exists a natural number m; < m such that

(3.9) 1(5°) = (1(8) = {guss o ) UG5, G, | s
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all the j7 are greater or equal to m, all the j, are less or equal to m -1,
{j‘l’,---,j;’nl} N {J1,*, Jmy p 18 @ null set and

(3.10) I(s°) =(L(s) = {n=Jj5, - n—jo, })u{n—"Ji.n—jm |-

Here T stands for z modn. The set {ji,*, jm, } corresponds to the set of rows
removed from My (s,t) and the set {jf, ---,j;’nl} corresponds to the new rows
which are then added to form a new sub-matrix My (s°,t). To prove that

the coefficient a is the unique coefficient of the monomial r(f), let us assume
by contradiction that there exists s° # (1,---,m) such that its corresponding

monomial in (3.8) is
[T f IT fi= T1 & I1 £5

kel(s®) jel(s®)° kel(s) jel(s)
Appealing to (3.9) and (3.10) we have

[T /e I1 fi= I1 Tr [1 fi

kel(s°) I(s°)° kE(I(S)*{jly"'yjml})U{jif"?jronl} je([(s)cf{n*jf,'“,n*j%il})U{n*jlv“'vn*jml}
= (fO"'fm—l) (flfn—m) .
Since {jf, ---,j;;ll} N {Jj1, " jm, } 18 an empty set then it must be the case that
Five i, = P Famg and fogers g = F Fimy-

As a result,
(B311) {jsdm = {n =g =g by {50} = {0 =g}
We observe that equality (3.11) is equivalent to

{jlv'“njml} = {j17'“7jm1}_1 and {j(1)7“'7j;n1} = {jcljf"?j;nl}_l :
Now using the fact that
max({jla"'7jm1}) <m-—1 and mln({j%?]ﬁyﬂ}) 2m,

together with Lemma 9, then statement (3.11) is absurd. Thus, the corre-
sponding coefficient in (3.8) to the monomial r (f) is the nonzero complex
number a. So, if

A= {Akl,‘..’Akm’AﬂlBj...7Apr}
then det (d5 (f)) is a non-vanishing polynomial. This completes the proof for
the first case. For the other remaining cases, we have two other possibilities to
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consider. Either A = {A* ... A} or A = {AMB, .-  A*»B}. Let us suppose
that A = {AF1 ... Ar} . Put

]_ wkl e w(n_z)kl w(n—l)kl

, ]_ ka ees w(n_z)kQ w(’n—l)kz
a = . . .

1 whn e -2k y(n-Dkn

Then
det (51 (1) = ' T] >

Appealing again to the fact that n is prime, and since a’ is a minor of a Fourier
matrix then det (05 (f)) is also a non-vanishing polynomial. For the last case,
let us assume that A = {A*B,--- A*»B}. Then

fo whifaq o wODAf

12 (n-1)¢
6A(f): f:.O w2fn—1 w : 2f1
fO wgn—l fn71 e w(n_l)zp fl

Using similar arguments to the second case, then

1 wzl ee w(n*I)Z1
1 w£2 ee w(n_l)ZZ n-1
det dp (f) =1 . . . Hqut().
1 wgn—l e w(n_l)gp JZO
This completes the proof. O

Example 13. Let n = 7. Let us suppose that we pick a subset A of ¥ of
T
cardinality seven such that Ox ([fg,fl, fo, f3, f4, 5. fG]T) is equal to

Jo Jo Jo Jo Jo Jo Jo
freF T freFimhe  fiefitha fefimh  foeRint  fiefima  foefints
faeTTEL fpetimhe  freitha  fefimhe  fedint  fletima  foegints
f3€?7rk1 fse?ﬂ€2 f3€?7rk3 fse?ﬁk4 f46?7r€1 f4€?7r€2 f46§’:7r£3
Ja Gi)lfrkl J 4617(;%2 Ja 6;@“3 J 46170@4 I3 61701% /3 6170@2 I3 6170@3
foe T foe TR fre T fre T foe T foe TR freTimts
f6€1—72i7rk1 f661—72i7rk2 f661—72i7rk3 f661—72i7rk4 flel—fzﬁrfl flel—;iwég f161—72i7r€3 )
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The monomial isolated in the proof of Proposition 12 to show that

det (x ((fo. fr. for Fo. fur f5r f)")

is a non-trivial polynomial is: fofEf2f2. The coefficient of fof2f2f2 in the
polynomial det (5x ((fo, f1 Jo J, Ja, J5, J6) ")) is given by

1 1 1 1
e;mrlﬁ 67271'1@ e?zwkg 67Zﬂk4

6*271’]{21 6727'(]{}2 672Wk3 672ﬂk4

e7z7r£1 67“%2 €7z7r£3

0,0y 6 7 00y e 7 z7r€5

(3.12) ¢’ 2

12,00, 12,00, —ur&
€7z7rk:1 €7Zﬂk2 €7z7rk3 672ﬂk4 € 7 € 7 €7

Furthermore, with some formal calculations, it is easy to see that (3.12) is
equal to

_ G%iwkl _ e%iwkg) e%wrkl lﬂ'kg) e%zwkl _ z7rk4)
e%’iﬂ'kz _ e%iwkg) (e%iﬂ'kz €7i7rk4) e%wrkg e717rk4)
%’L’ﬂ'eleg(%iﬂfg)e%(giﬂ'l&g) _ egi’releg(gm@)ez(””m

— o3 Ginty) Rintly (5 (Fimts) o o3 (Rinty) 5 (Rinta)  Fimls

Lo Gimty) Binty 3 (Bimts) _ 5 (5i 7r€1)62(8@7r52)€717r€3)

3.1. Proof of Theorem 1. The proofs of Part 1 and 2 of Theorem 1 follow
from Corollary 8, Proposition 12 and Lemma 3.

3.2. Proof of Theorem 2. Let 7 be a unitary irreducible representation of
Ds,,. The classification of the irreducible representations of the Dihedral group
is well-understood (see Page 36, [9]). When n is even, then up to equivalence
there are four one-dimensional irreducible representations. When n is odd,
up to equivalence there are two one-dimensional irreducible representations
of the Dihedral group. If 7 is an irreducible representation of Dy, which
is not a character then it is well-known that 7 must be a two-dimensional
representation obtained by inducing some character of the normal subgroup
generated by r to Dy,. If 7 is a character then Part 1 holds obviously. In fact,
for any nonzero vector v € C, the set 7(Ds,)v has the Haar property. Now,
suppose that 7 is not a character. Furthermore, assume that n is odd. Then
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there exists j, 1 <j<n -1 and a realization of the representation 7 such that
T = 7j, where

27mji

(3.13) 7 (r) = ( eon 6_9,;11' ) and 7; (s) = ( ? é )

Similarly, in the case where n is even, there exists 7, j € {1,--,n -1} - {g} such
that 7 = 7; is as described in (3.13). For Part 2, assume that n is prime. There

are three main cases to consider. Let v = ( V] Vs )T e C2. Let us suppose
that M =7 ()™, N =7 (r)™ such that k; # ks and ky, ks € Z,,. Then
2im 2mj (kn - kz))

- )

il
Vi€ Qzﬂnkg

oy
—QZTrnkl

v1€
P J
—27,7rnk:2

‘MU Nv‘z

= 2101 v9 SIN (

Vo€ Vo€

Next, let us suppose that M =7 (r)k1 ,N =7 (r*2s) where ki, ks € Z,. Then

vlezi”%’“l wem%i@
Mv Nv ‘: oimik il k
voe 2Tk gy om2im ke
2707 (ky — ko . . 27] (k1 — ko
:('Uf—vg)cos(¥ +i (v} +v3)sin 2mj (b = k2) :
n n

Finally, let us suppose that
M=T1 (rkls) N =1 (’I“kQS)

such that ki # ke and kq, ky € Z,,. Then

QiW%kl

i d
Vg€ 2z7rnk2

]
—2171';]61

V€

Mv  Nv ‘ = —2ird ks 2mj (ks - k2)) :

= 2i01U2 sin (
n

V1€ V1€

Next, it is easy to check that the polynomials
2mj (k1 — ko) )

p (v1,v2) = 2iv1vy sin (
n

and
(3.14) p (v1,v2) = (v —v3) cos(

are all non-trivial whenever n is prime. Indeed, if n is prime, ki — ko €
{1, n—-1}, j € {1,--,n—1}, then the real number 27”(];;’”) can never be
equal to ¢ where ¢ € Z. So, p(v1,v2) is a nonzero homogeneous polynomial

27j (kl—kg)) 2wy (k1—k2))

+i (v} +v3) sin(
n
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in vy, ve. Next, since the coefficient of the monomial v? in (3.14) is given by
2mj(k1—kg) . .
¢i= = then p’ (v1,v2) is a nonzero homogeneous polynomial as well. So

when n is prime, for any distinct matrices M, N € 7 (D,,), the set {Mv, Nv}
is linearly independent for almost every v € C2. For Part 4, let us assume that n
is an odd composite number. Then there exist odd natural numbers nq,n, € N
such that n =mniny and ny ¢ {1,n}. Next, we observe that

e ™ 0 ) (1 0) (00
0 o |70 1) {00

So for any vector v € C2, the set {v,7,, (r"2)v} is linearly dependent. Now,
let us consider the representation of the Dihedral group 7 defined such that

27
en 0 01
7'1(7")=( 0 e_T)andﬁ(s)=(1 0).

For distinct matrices M, N € 7 ( Dy, ), either
2 (kl - k‘g)
n

‘ Mv Nv ‘=2iU1UQSiH( )7 ki —koe{l,--,m—-1}

or

‘ Muv Nv ‘: (vf —vg)cos(w) +i(U%+v§)sin(M)’

n

where ki, ks € {1,--,n—1}. Since n is assumed to be odd and because k; —

or(ki—k2)\ - .
%) is a non-trivial

ky € {1,--;n—1}; it is easy to see that 2ivjve sin(
homogeneous polynomial. To show this, let us suppose that for k& = k; — ko,
% = 7wl for some ¢ € Z. Then k = %nf. Since n is odd then ¢ = 2¢" for some

0" e Z. 1t follows that k is a multiple of n, and this is impossible. Next, the

fact that
(01 - 08) cos (ZTEE) g (0 4 0) s (20D
n n

is a nonzero polynomial was already proved for Part 2. Finally for Part 3, let
us assume that n = 2j is even, and j € {1, n—-1} - {%} If 7 is odd, then it
is easy to see that
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Also, if j is even then

(ro), (eFE 0 Y_ (00
01 0 23 )7 oo

Thus it is not possible to find a vector in C? such that for any distinct matrices
M, N €7 (Ds,), the set {Mv, Nv} is linearly independent. This completes the
proof.

4. EXAMPLES

Example 14. Let n = 3. For any subset A of ¥ of cardinality 3, it is not too
hard to see that the polynomial det (5A ((1, 2, 24)T)) is a nonzero polynomial of
degree at most 8 in the variable z. Thus, given any algebraic number x of degree

at least 9 over the cyclotomic field Q (e%) or given any transcendental number
x,  cannot be a root of the polynomial det (5A((1,z,z4)T)). It follows that

the set TF-1 (1, z,24)" is a frame in C3 which is mazimally robust to erasures.
For example, if z = then

V(b e+
v = F_l (1’ N 24)T _ _ (m-1)(V3r-3im+V/3r2+V/313-3in2-3ir3+2/3)

6
(m=1)(3im+v/Br+v/3n2+y/3r3+3in2+3im5+2V/3)
B 6

and T'v is a frame in C3 which is maximally robust to erasures.

Example 15. Let n=5. Put

v=(i - 1 1+i 2-i)".
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Using Mathematica, we are able to show that Tv is a frame in C> which is
mazimally robust to erasures. Put

MF (U) =

1+
2-1

-1
1
1+

1

2—1
1+14
1+
2-14
)
-1
1

1+
1

2-1
1+

Each row of the matrix above corresponds to an element of the orbit of v. Thus
every sub-matriz of My (v) of order five is invertible.
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