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Abstract. Let n be a natural number larger than two. Let D2n = ⟨r, s ∶
rn = s2 = e, srs = rn−1⟩ be the Dihedral group, and κ an n-dimensional
unitary representation of D2n acting in Cn as follows. (κ(r)v)(j) = v((j−1)
mod n) and (κ(s)v)(j) = v((n − j) mod n) for v = (v0,⋯, vn−1) ∈ Cn. For
any representation which is unitarily equivalent to κ, we prove that when
n is prime there exists a Zariski open subset E of Cn such that for any
vector v ∈ E, any subset of cardinality n of the orbit of v under the action
of this representation is a basis for Cn. However, when n is even there is
no vector in Cn which satisfies this property. As a result, we derive that
if n is prime, for almost every (with respect to Lebesgue measure) vector
v in Cn the Γ-orbit of v is a frame which is maximally robust to erasures.
We also consider the case where τ is equivalent to an irreducible unitary
representation of the Dihedral group acting in a vector space Hτ ∈ {C,C2

}

and we provide conditions under which it is possible to find a vector v ∈Hτ

such that τ (Γ) v has the Haar property.

1. Introduction

Let F be a set of m ≥ n vectors in an n-dimensional vector space Kn over a
field K ∈ {R,C} . We say that F has the Haar property if any subset of F of
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cardinality n is a basis for Kn. Let

T =

⎛
⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 1
1 0 ⋯ 0 0
0 1 ⋱ ⋮ ⋮
⋮ ⋱ ⋱ 0 0
0 ⋯ 0 1 0

⎞
⎟⎟⎟⎟⎟
⎠

and M =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
exp (2πi

n
)

exp (4πi
n
)

⋱
exp (2πi(n−1)

n )

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

be two invertible matrices with complex entries. The group generated by these
matrices is isomorphic to the finite Heisenberg group

Heis (n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

1 m k
0 1 l
0 0 1

⎞
⎟
⎠
∶ (k,m, l) ∈ Zn ×Zn ×Zn

⎫⎪⎪⎪⎬⎪⎪⎪⎭
which is a nilpotent group. It is well-known that (see [6]) if n is prime then
there exists a Zariski open set E of Cn such that for every vector v ∈ E, the set
{M lT kv ∶ 1 ≤ l, k ≤ n} has the Haar property. This special property has some
important application in the theory of frames. We recall that a frame (see
[3]) in a Hilbert space is a sequence of vectors (uk)k∈I with the property that
there exist constants a, b which are strictly positive such that for any vector u
in the given Hilbert space, we have

(1.1) a ∥u∥2 ≤ ∑
k∈I

∣⟨u,uk⟩∣2 ≤ b ∥u∥2
.

The constant values a, b are called the frame bounds of the frame. It can be
derived from (1.1) that a frame in a finite-dimensional vector space is simply a
spanning set for the vector space. Thus, every basis is a frame. However, it is
not the case that every frame is a basis. Indeed, frames are generally linearly
dependent sets. Let π be a unitary representation of a group G acting in a
Hilbert space Hπ. Let v ∈ Hπ. Any set of the type π(G)v which is a frame is
called a G-frame.

A frame (xk)k∈I in an n-dimensional vector space is maximally robust to
erasures if the removal of any l ≤ m − n vectors from the frame leaves a
frame (see [6], [3] Section 5.) Coming back to the example of the Heisen-
berg group previously discussed, it is proved in [6] that if n is prime then
the set {M jT kv ∶ (k, j) ∈ Z2

n} is maximally robust to erasures for almost every
(with respect to Lebesgue measure) v ∈ Cn. In the present work, we consider
a variation of this example. The main objective of this paper is to prove that
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there exists a class of Dihedral group frames which are maximally robust to
erasures.

Let n be a natural number greater than two. Let D2n be the Dihedral group
of order 2n. A presentation of the Dihedral group is:

D2n = ⟨r, s ∶ rn = s2 = e, srs = rn−1⟩

where e stands for the identity of the group. Next, we define a monomorphism
κ ∶D2n → GL (n,C) such that

(1.2) κ (r) =

⎛
⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 1
1 0 ⋯ 0 0
0 1 ⋱ ⋮ ⋮
⋮ ⋱ ⋱ 0 0
0 ⋯ 0 1 0

⎞
⎟⎟⎟⎟⎟
⎠

, κ (s) =

⎛
⎜⎜⎜⎜⎜
⎝

1 0 ⋯ 0 0
0 0 ⋯ 0 1
⋮ ⋮ ⋰ ⋰ 0
0 0 1 ⋰ ⋮
0 1 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟
⎠

.

Clearly κ is a finite-dimensional unitary representation of the Dihedral group
which is reducible. Put

A = κ (r) and B = κ (s) .

Next, let Γ be a finite subgroup of GL (n,C) which is generated by the matrices
A and B. We are interested in the following questions.

Problem 1 Let α be a unitary representation of the Dihedral acting in a
Hilbert space Hα. Suppose that α is unitarily equivalent to κ. Under which con-
ditions is it possible to find a vector v ∈ Hα such that the set {α (x) v ∶ x ∈D2n}
has the Haar property?
Problem 2 Let τ be a unitary irreducible representation of D2n acting in
a finite-dimensional Hilbert space Hτ . Under which conditions is it possible
to find a vector v ∈ Hτ such that τ (D2n) v = {τ (x) v ∶ x ∈D2n} has the Haar
property?

To reformulate the problems above, put D2n = {x1,⋯, x2n} . Let α be a
representation of the Dihedral group acting in Hα which is either irreducible
and unitary or is equivalent to κ. We would like to investigate conditions
under which it is possible to find

v = ( v0, ⋯ , vdim(Hα)−1 ) ∈ Cdim(Hα)
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such that every minor of order dim (Hα) of the 2n × dim (Hα) matrix

⎛
⎜
⎝

(x1v)0 ⋯ (x1v)dimHα−1

⋮ ⋮
(x2nv)0 ⋯ (x2nv)dimHα−1

⎞
⎟
⎠

is nonzero. Here is a summary of the main results of the paper.

Theorem 1. Let n be a natural number larger than two, and let α be a repre-
sentation which is equivalent to κ. The following holds true:

(1) If n is even then it is not possible to find a vector v ∈ Hα such that
α (D2n) v has the Haar property.

(2) If n is prime then there exists a Zariski open set E ⊂ Hα such that
for any v ∈ E, α (D2n) v has the Haar property. In other words, for
any v ∈ E, α (D2n) v is a frame in Cn which is maximally robust to
erasures.

Theorem 2. Let τ be an irreducible representation of the Dihedral group acting
in a vector space Hτ .

(1) If τ is a character then for any nonzero complex number z, τ (D2n) z
has the Haar property.

(2) If τ is not a character and if n is prime then for almost every vector v
in Hτ , τ (D2n) v has the Haar property.

(3) If τ is not a character and if n is even then there does not exist a vector
v in Hτ such that τ (D2n) v has the Haar property.

(4) Suppose that n is a composite odd natural number.
(a) There exists an irreducible representation τ ′ of D2n acting in Hτ ′

such that for any vector in v in Hτ ′, τ ′ (D2n) v does not have the
Haar property.

(b) There exists an irreducible representation τ ′′ of D2n acting in Hτ ′′

such that for almost every vector in v in Hτ ′′, τ ′′ (D2n) v has the
Haar property.

Since the discrete Fourier transform plays a central role in the proofs of the
results above, it is worth pointing out that, constructions of Parseval frames
which are maximally robust to erasures using discrete Fourier transforms have
also been produced in [2].

Our work is organized as follows. In the second section, we recall some well-
known facts about Fourier analysis on finite abelian groups, and the Laplace’s
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Expansion Formulas which are all crucial for the proofs of the main results.
The main results of the paper (Theorem 1, and Theorem 2) are proved in
the third section of the paper. Finally, examples are computed in the fourth
section.

2. Preliminaries

Let us start by fixing some notations. Given a matrix M, the transpose of
M is denoted MT . The determinant of a matrix M is denoted by det(M) or
∣M ∣. The kth row of M is denoted rowk (M) and similarly, the kth column of
the matrix M is denoted colk (M) .

Let G be a group with a binary operation which we denote multiplicatively.
Let E be a subset of G. The set E−1 is a subset of G which contains all inverses
of elements of E. More precisely, E−1 = {a−1 ∶ a ∈ E} . For example, let G be
the cyclic group Zn. Then given any subset E of Zn,

E−1 = {(n − k)modn ∶ k ∈ E} .

Let G be a group acting on a set S. We denote this action multiplicatively.
For any fixed element s ∈ S, the G-orbit of s is described as Gs = {gs ∶ g ∈ G} .

Let α be a unitary representation of a group G acting in a Hilbert space
Hα. That is, α is a homomorphism from G into the group of unitary matrices
of order dimC (Hα) . We say that α is an irreducible representation of G if and
only if the only subspaces of Hα which are invariant under the action of α
are the trivial ones. For example a unitary character (a homomorphism from
G into the circle group) is an irreducible unitary representation. Two unitary
representations α,α′ of a group G acting in Hα,Hα′ respectively are equivalent
if there exists a unitary map U ∶ Hα →Hα′ such that

Uα (x)U−1 = α′ (x) for all x ∈ G.

We say that U intertwines the representations α and α′. Let M be a matrix.
Next, let z ∈ C. The complex conjugate of z is written as z. The cardinality of
a set S is denoted card (S) . Throughout this paper, we shall always assume
that n is a natural number larger than two. Following the discussion above,
the following is immediate:

Lemma 3. Let α,α′ be two equivalent unitary representations of a group G.
Let U be a unitary map which intertwines the representations α,α′. Let v ∈
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Hα. Then α (G) v has the Haar property if and only if α′ (G)Uv has the Haar
property.

2.1. Fourier Analysis on Zn. Let Zn = {0,1,⋯, n − 1} . We define the Hilbert
space

l2 (Zn) = {f ∶ Zn → C}
which is the set of all complex-valued functions on Zn endowed with the fol-
lowing inner product:

⟨φ,ψ⟩ = ∑
x∈Zn

φ (x)ψ (x) for φ,ψ ∈ l2 (Zn) .

The norm of a given vector φ in l2 (Zn) is computed as follows:

∥φ∥l2(Zn) = ⟨φ,φ⟩1/2
.

We recall that the discrete Fourier transform is a map F ∶ l2 (Zn) → l2 (Zn)
defined by

(Fφ) (ξ) = 1

n1/2 ∑
k∈Zn

φ (k) exp(2πikξ

n
) , for φ ∈ l2 (Zn) .

The following facts are also well-known (see [8]). Firstly, the discrete Fourier
transform is a bijective linear operator. Secondly, the Fourier inverse of a
vector ϕ is computed as follows:

F−1ϕ (k) = 1

n1/2 ∑
ξ∈Zn

ϕ (ξ) exp(−2πikξ

n
) .

Finally, the Fourier transform is a unitary operator. More precisely, given
φ,ψ ∈ l2 (Zn) , we have

⟨φ,ψ⟩ = ⟨Fφ,Fψ⟩ .
We shall need the following lemma which is proved in [4].

Lemma 4. Let F be the matrix representation of the Fourier transform. If n
is prime then every minor of F is nonzero.

We recall that

A =

⎛
⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 1
1 0 ⋯ 0 0
0 1 ⋱ ⋮ ⋮
⋮ ⋱ ⋱ 0 0
0 ⋯ 0 1 0

⎞
⎟⎟⎟⎟⎟
⎠

, and B =

⎛
⎜⎜⎜⎜⎜
⎝

1 0 ⋯ 0 0
0 0 ⋯ 0 1
⋮ ⋮ ⋰ ⋰ 0
0 0 1 ⋰ ⋮
0 1 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟
⎠

.
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Identifying l2 (Zn) with Cn via the map

v ↦ ( v (0) ⋯ v (n − 1) )T ,
we may write

Av (j) = v ((j − 1)modn) and Bv (j) = v ((n − j)modn) .
Next, with some formal calculations, it is easy to check that the following facts
hold true:

Lemma 5. For any ξ ∈ Zn, we have (FBv) (ξ) = (Fv) ((n − ξ)modn) and

(FAv) (ξ) = e 2πi
n
ξ (Fv) (ξ) .

From Lemma 5, we obtain the following. Let F be the matrix representation
of the Fourier transform and define

A = FAF−1 and B = FBF−1 = B.
Then

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1

e
2πi
n

e
4πi
n

⋱
e

2πi(n−1)
n

⎞
⎟⎟⎟⎟⎟⎟
⎠

and B =

⎛
⎜⎜⎜⎜⎜
⎝

1 0 ⋯ 0 0
0 0 ⋯ 0 1
⋮ ⋮ ⋰ ⋰ 0
0 0 1 ⋰ ⋮
0 1 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟
⎠

.

2.1.1. Laplace’s Expansion Theorem. The following discussion is mainly taken
from Chapter 3, [5]. Let X be a square matrix of order n.

Definition 6. A minor of X is the determinant of any square sub-matrix Y
of X. Let ∣Y ∣ be an m-rowed minor of X. The determinant of the sub-matrix
obtained by deleting from X the rows and columns represented in Y is called the
complement of ∣Y ∣ . Let ∣Y ∣ be the m-rowed minor of X in which rows i1,⋯, im
and columns j1,⋯, jm are represented. Then the algebraic complement, or
cofactor of ∣Y ∣ is given by

(−1)∑
m
k=1 ik+∑mk=1 jk ∣Z ∣

where ∣Z ∣ is the complent of ∣Y ∣ .

According to Laplace’s Expansion Theorem (see 3.7.3, [5]) a formula for
the determinant of X can be obtained by following three main steps.

(1) Select any m rows (or columns) from the matrix X.
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(2) Collect all m-rowed minors of X found in these m rows (or columns).
(3) The determinant of X is equal to the sum of the products of each of

these minors and its algebraic complement.

To be more precise, let X = (Xi,j)1≤i,j≤n be a square matrix of order n. Let

T (n, p) be the set of all p-tuples of integers: s = (s1,⋯, sp) where 1 ≤ s1 < s2 <
⋯ < sp ≤ n. Given any s, t ∈ T (n, p) , we let X (s, t) be the sub-matrix of order
p of A such that

X (s, t)i,j =Xsi,tj .

Next, let X (s, t)c be the complementary matrix of X (s, t) which is a matrix
of order n − p obtained by removing rows s1,⋯, sp and columns t1,⋯, tp from
the matrix A. Define

∣s∣ =
p

∑
k=1

sk.

According to Laplace’s Expansion Theorem, for any fixed t ∈ T (n, p) ,

(2.1) det (X) = ∑
s∈T (n,p)

(−1)∣s∣+∣t∣ det (X (s, t))det (X (s, t)c) .

3. Proof of Main Results

Proposition 7. Assume that n > 2 and is even. Given any γ ∈ Γ, the following
holds true:

n−2
2

∑
k=0

γA2k =
n−2
2

∑
k=0

γA2kB.

In other words, there exists a subset {γk1 ,⋯, γkn} of Γ of cardinality n which
is linearly dependent over C.

Proof. Let I = {0,2,⋯, n − 2} . Put ω = e 2πi
n . Then

∑
k∈I

Ak =
n−2
2

∑
k=0

A2k =

⎛
⎜⎜⎜⎜⎜
⎝

∑
n−2
2

k=0 1

∑
n−2
2

k=0 ω
2k

⋱
∑

n−2
2

k=0 ω
2(n−1)k

⎞
⎟⎟⎟⎟⎟
⎠

.

Now, we claim that ∑k∈I Ak is a diagonal matrix with only two nonzero entry.

To see that this holds, it suffices to observe that (∑
n−2
2

k=0 A2k)
1,1

= n
2 and for
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j ≠ 1,

⎛
⎝

n−2
2

∑
k=0

A2k
⎞
⎠
j,j

=
n−2
2

∑
k=0

ω2jk = { 0 if j ≠ n
2

n
2 if j = n

2

.

Moreover, for j ≠ l, (∑
n−2
2

k=0 A2k)
j,l

= 0. Next

∑
k∈I

AkB=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

n
2

∑
n−2
2

k=0 e
2πi(2k)

n 0 ⋯ 0

0 ∑
n−2
2

k=0 e
2πi(2k)2

n ⋮
⋮ ⋱ 0

0 ⋯ 0 ∑
n−2
2

k=0 e
2πi(2k)(n−1)

n

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

1
0 0 ⋯ 1
⋮ ⋰ 0
0 1 ⋮
1 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟
⎠

(3.1)

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

n
2

0 0 ⋯ ∑
n−2
2

k=0 e
2πi(2k)

n

⋮ ⋰ 0

0 ∑
n−2
2

k=0 e
2πi(2k)(n−2)

n ⋮
∑

n−2
2

k=0 e
2πi(2k)(n−1)

n 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

(3.2)

From (3.1), and (3.2), it is easy to see that the entry

n−2
2

∑
k=0

e
2πi(2k)(n−j)

n for 1 ≤ j ≤ n − 1

is the only possible nonzero element of colj+1 (∑k∈I AkB) . Thus, for any index

j, (0 ≤ j ≤ n−1) the complex number ∑
n−2
2

k=0 e
2πi(2k)(n−j)

n is a diagonal entry of the

matrix∑k∈I AkB if and only if j = n
2 , or j = 0. Therefore, ∑

n−2
2

k=0 A2k = ∑
n−2
2

k=0 A2kB

and this implies that ∑
n−2
2

k=0 F−1A2k = ∑
n−2
2

k=0 F−1A2kB. Since F−1A = AF−1 and
F−1B = BF−1 then

(3.3)

n−2
2

∑
k=0

A2k =
n−2
2

∑
k=0

A2kB.
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Finally, given any γ ∈ Γ, by multiplying (3.3) on the left by γ we obtain the
desired result. �

Corollary 8. If n is even then it is not possible to find a vector v ∈ Cn such
that Γv has the Haar property.

Proof. According to Proposition 7, any vector v is in the kernel of the linear

operator ∑
n−2
2

k=0 A
2k − ∑

n−2
2

k=0 A
2kB. Thus, for any fixed vector v ∈ Cn, the set of

vectors

{A2kv ∶ 0 ≤ k ≤ n − 2

2
} ∪ {A2kBv ∶ 0 ≤ k ≤ n − 2

2
}

is linearly dependent. �

Lemma 9. Assume that n is an odd natural number greater than one. Let
m ∈ N such that 1 ≤ m < n. Let Zn = {0,1,⋯,m − 1} ∪ {m,⋯, n − 1}. Let
B1 ⊆ {0,1,⋯,m − 1} ,B2 ⊆ {m,⋯, n − 1} such that card (B1) = card (B2) ≥ 1.
Then it is not possible for B−1

1 = B1 and B−1
2 = B2.

Proof. We shall prove this lemma by cases. For the first case, let us suppose
that card (B1) = card (B2) = 1. Since B1 and B2 are disjoint, then either B1

contains a non-trivial element or B2 contains a non-trivial element. In either
case, it is not possible for B−1

1 = B1 and B−1
2 = B2. This is due to the fact that

when n is odd, the only element which is equal to its additive inverse (modn)
is the trivial element 0. For the second case, let us suppose that m < n

2 and
card (B1) = card (B2) > 1. Then, there is at least one non-trivial element of
Zn in the set B1. If B−1

1 = B1 then there exist k, k′ ∈ B1 such that k = n − k′.
Now, since k, k′ ≤ m − 1 then n = k + k′ ≤ 2 (m − 1) < n − 2 and this is absurd.
For the third case, let us suppose that m > n

2 and card (B1) = card (B2) > 1. If
B−1

2 = B2 then there must exist k, k′ ∈ B2 such that k + k′ = n, and k, k′ ≥ m.
Thus, n = k + k′ ≥ 2m > n and this is absurd as well. �

Example 10. Let Z7 = {0,⋯,6} . Put m = 3. Now let B1 = {0,1} and B2 =
{3,4} . Then B−1

2 = B2. However, B−1
1 = {0,6} ≠ B1.

Remark 11. We remark here that Lemma 9 fails when n is even. For example,
let us consider the finite cyclic group of order four. Let m = 2, B1 = {0} and
B2 = {2} . Then clearly, B−1

1 = B1 and B−1
2 = B2.

Define the group
Σ = FΓF−1 = {FγF−1 ∶ γ ∈ Γ}
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which is also isomorphic to the Dihedral group. We recall that for any vector
v ∈ Cn, we write

v = ( v0 v1 ⋯ vn−1 )T .

For any subset Λ = {γk1 ,⋯, γkn} of the group Σ, we consider the corresponding
matrix-valued function defined on Cn as follows.

δΛ ∶ f ↦
⎛
⎜
⎝

γk1f
⋮

γknf

⎞
⎟
⎠
=
⎛
⎜
⎝

(γk1f)0 ⋯ (γk1f)n−1

⋮ ⋱ ⋮
(γknf)0 ⋯ (γknf)n−1

⎞
⎟
⎠
.

We acknowledge that the proof of the following proposition was partly inspired
by the proof given for Theorem 4, [6].

Proposition 12. Let Λ be any subset of Σ of cardinality n. If n is prime
then there exists a Zariski open set E ⊂ Cn such that given any vector f ∈ E,
det δΛ (f) is a non-vanishing homogeneous polynomial.

Proof. Put ω = e 2πi
n . There are several cases to consider. For the first case, let

us suppose that there exist natural numbers m,p such that m + p = n, such
that

Λ = {Ak1 ,⋯,Akm ,A`1B,⋯,A`pB}

and
(3.4)

δΛ (f) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

f0 ωk1f1 ⋯ ω(m−1)k1fm−1 ωmk1fm ⋯ ω(n−2)k1fn−2 ω(n−1)k1fn−1

f0 ωk2f1 ⋯ ω(m−1)k2fm−1 ωmk2fm ⋯ ω(n−2)k2fn−2 ω(n−1)k2fn−1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
f0 ωkmf1 ⋯ ω(m−1)kmfm−1 ωmkmfm ⋯ ω(n−2)kmfn−2 ω(n−1)kmfn−1

f0 ω`1fn−1 ⋯ ω(m−1)`1fn−(m−1) ωm`1fn−m ⋯ ω(n−2)`1f2 ω(n−1)`1f1

f0 ω`2fn−1 ⋯ ω(m−1)`2fn−(m−1) ωm`2fn−m ⋯ ω(n−2)`2f2 ω(n−1)`2f1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
f0 ω`pfn−1 ⋯ ω(m−1)`pfn−(m−1) ωm`pfn−m ⋯ ω(n−2)`pf2 ω(n−1)`pf1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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Now, fix t = (1,⋯,m) . We consider the transpose of δΛ (f) which is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

f0 ⋯ f0 f0 ⋯ f0

ωk1f1 ⋯ ωkmf1 ω`1fn−1 ⋯ ω`pfn−1

⋮ ⋮ ⋮ ⋮
ω(m−1)k1fm−1 ⋯ ω(m−1)kmfm−1 ω(m−1)`1fn−(m−1) ⋯ ω(m−1)`pfn−(m−1)
ωmk1fm ⋯ ωmkmfm ωm`1fn−m ⋯ ωm`pfn−m

⋮ ⋮ ⋮ ⋮
ω(n−2)k1fn−2 ⋯ ω(n−2)kmfn−2 ω(n−2)`1f2 ⋯ ω(n−2)`pf2

ω(n−1)k1fn−1 ⋯ ω(n−1)kmfn−1 ω(n−1)`1f1 ⋯ ω(n−1)`pf1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

To avoid cluster of notation, put

Mf = (δΛ (f))T .

Applying Laplace’s Expansion Theorem (2.1) to Mf , we obtain

det (Mf) = ∑
s∈T (n,m)

(−1)∣s∣+∣t∣ det (Mf (s, t))det ((Mf (s, t))c) .

For t = (1,⋯,m) , Mf (t, t) is the matrix obtained by retaining the first m
rows and first m columns of the matrix Mf . The matrix Mf (t, t)c is a ma-
trix of order n −m = p which is obtained by deleting the first m rows and
the first m columns of Mf . Thus, for t = (1,⋯,m) , it is easy to see that

(−1)2∣t∣
det (Mf (t, t))det (Mf (t, t)c) is equal to

(3.5)

pΛ (f) =

RRRRRRRRRRRRRRRRRR

f0 ⋯ f0

ωk1f1 ⋯ ωkmf1

⋮ ⋮
ω(m−1)k1fm−1 ⋯ ω(m−1)kmfm−1

RRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRR

ωm`1fn−m ⋯ ωm`pfn−m
⋮ ⋮

ω(n−2)`1f2 ⋯ ω(n−2)`pf2

ω(n−1)`1f1 ⋯ ω(n−1)`pf1

RRRRRRRRRRRRRRRRRR

.

Using the fact that the determinant map is multi-linear, then (3.5) becomes

(3.6) pΛ (f) = ar (f)

where

a =

RRRRRRRRRRRRRRRRRR

1 ⋯ 1
ωk1 ⋯ ωkm

⋮ ⋮
ω(m−1)k1 ⋯ ω(m−1)km

RRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRR

ωm`1 ⋯ ωm`p

⋮ ⋮
ω(n−2)`1 ⋯ ω(n−2)`p

ω(n−1)`1 ⋯ ω(n−1)`p

RRRRRRRRRRRRRRRRRR

∈ C,
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and r (f) is the monomial given by

(3.7) r (f) =
m−1

∏
k=0

fk
n−m
∏
j=1

fj.

Using Chebotarev’s theorem (see Lemma 4), since n is prime and because
a is a product of minors of the discrete Fourier matrix, then a ≠ 0 and the
polynomial pΛ (f) is nonzero. Next, we remark that det (Mf) is a homogeneous
polynomial of degree n in the variables f0,⋯, fn−1 and can be uniquely written
as

det (Mf) = ∑
α∈Zn

+
,∣α∣=n

aαf
α0
0 ⋯fαn−1n−1 , where aα ∈ C.

Regarding the formula above, we remind the reader that the multi-index α is
equal to (α0,⋯, αn−1) . To show that the polynomial det (Mf) is nonzero, it
suffices to find a multi-index α such that ∣α∣ = n and aα ≠ 0. In order to prove
this fact, we would like to isolate a certain monomial of the type fα0

0 ⋯fαn−1n−1 in

(3.8) det (Mf) = ∑
s∈T (n,m)

(−1)∣s∣+∣t∣ det (Mf (s, t))det ((Mf (s, t))c)

and prove that its corresponding coefficient aα is non zero. The monomial in
question that we aim to isolate is r (f) which is defined in (3.7). We shall
prove that the corresponding coefficient in (3.8) to r (f) is just the complex
number a which is described in Formula (3.6). First, it is easy to see that

r (f) = ∏
k∈I(s)

fk ∏
j∈I(s)c

fj

where

I (s) = {0 ≤ k ≤m − 1} and I (s)c = {1 ≤ k ≤ n −m} .
Next for any s○ ∈ T (n,m), let us suppose that s○ ≠ t. We may write s○ =
(s○j1 ,⋯, s

○
jm

) and

det (Mf (s○, t))det (Mf (s○, t)c) = a○ ∏
k∈I(s○)

fk ∏
I(s○)c

fk

where a○ ∈ C and the sets I (s○) and I (s○)c are described as follows. There
exists a natural number m1 ≤m such that

(3.9) I (s○) = (I (s) − {j1,⋯, jm1}) ∪ {j○1 ,⋯, j○m1
} ,
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all the j○k are greater or equal to m, all the jk are less or equal to m − 1,

{j○1 ,⋯, j○m1
} ∩ {j1,⋯, jm1} is a null set and

(3.10) I (s○)c = (I (s)c − {n − j○1 ,⋯, n − j○m1
}) ∪ {n − j1,⋯, n − jm1

} .
Here x stands for xmodn. The set {j1,⋯, jm1} corresponds to the set of rows
removed from Mf (s, t) and the set {j○1 ,⋯, j○m1

} corresponds to the new rows
which are then added to form a new sub-matrix Mf (s○, t) . To prove that
the coefficient a is the unique coefficient of the monomial r(f), let us assume
by contradiction that there exists s○ ≠ (1,⋯,m) such that its corresponding
monomial in (3.8) is

∏
k∈I(s○)

fk ∏
j∈I(s○)c

fj = ∏
k∈I(s)

fk ∏
j∈I(s)c

fj.

Appealing to (3.9) and (3.10) we have

∏
k∈I(s○)

fk ∏
I(s○)c

fk =
⎛
⎜
⎝

∏
k∈(I(s)−{j1,⋯,jm1})∪{j○1,⋯,j○m1

}
fk

⎞
⎟
⎠

⎛
⎜
⎝

∏
j∈(I(s)c−{n−j○1,⋯,n−j○m1

})∪{n−j1,⋯,n−jm1}
fj

⎞
⎟
⎠

= (f0⋯fm−1) (f1⋯fn−m) .

Since {j○1 ,⋯, j○m1
} ∩ {j1,⋯, jm1} is an empty set then it must be the case that

fj○1⋯fj○m1
= fn−j○1⋯fn−j○m1

and fn−j1⋯fn−jm1
= fj1⋯fjm1

.

As a result,

(3.11) {j1,⋯, jm1} = {n − j1,⋯, n − jm1
} , {j○1 ,⋯, j○m1

} = {n − j○1 ,⋯, n − j○m1
} .

We observe that equality (3.11) is equivalent to

{j1,⋯, jm1} = {j1,⋯, jm1}
−1

and {j○1 ,⋯, j○m1
} = {j○1 ,⋯, j○m1

}−1
.

Now using the fact that

max ({j1,⋯, jm1}) ≤m − 1 and min ({j○1 ,⋯, j○m1
}) ≥m,

together with Lemma 9, then statement (3.11) is absurd. Thus, the corre-
sponding coefficient in (3.8) to the monomial r (f) is the nonzero complex
number a. So, if

Λ = {Ak1 ,⋯,Akm ,A`1B,⋯,A`pB}
then det (δΛ (f)) is a non-vanishing polynomial. This completes the proof for
the first case. For the other remaining cases, we have two other possibilities to
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consider. Either Λ = {Ak1 ,⋯,Akn} or Λ = {Ak1B,⋯,AknB} . Let us suppose
that Λ = {Ak1 ,⋯,Akn} . Put

a′ =

RRRRRRRRRRRRRRRRRR

1 ωk1 ⋯ ω(n−2)k1 ω(n−1)k1

1 ωk2 ⋯ ω(n−2)k2 ω(n−1)k2

⋮ ⋮ ⋱ ⋮ ⋮
1 ωkn ⋯ ω(n−2)kn ω(n−1)kn

RRRRRRRRRRRRRRRRRR

.

Then

det (δΛ (f)) = a′
n−1

∏
j=0

fj.

Appealing again to the fact that n is prime, and since a′ is a minor of a Fourier
matrix then det (δΛ (f)) is also a non-vanishing polynomial. For the last case,
let us assume that Λ = {Ak1B,⋯,AknB} . Then

δΛ (f) =
⎛
⎜⎜⎜
⎝

f0 ω`1fn−1 ⋯ ω(n−1)`1f1

f0 ω`2fn−1 ⋯ ω(n−1)`2f1

⋮ ⋮ ⋮
f0 ω`n−1fn−1 ⋯ ω(n−1)`pf1

⎞
⎟⎟⎟
⎠
.

Using similar arguments to the second case, then

det δΛ (f) =

RRRRRRRRRRRRRRRRRR

1 ω`1 ⋯ ω(n−1)`1

1 ω`2 ⋯ ω(n−1)`2

⋮ ⋮ ⋮
1 ω`n−1 ⋯ ω(n−1)`p

RRRRRRRRRRRRRRRRRR

n−1

∏
j=0

fj ≠ 0.

This completes the proof. �

Example 13. Let n = 7. Let us suppose that we pick a subset Λ of Σ of

cardinality seven such that δΛ ([f0, f1, f2, f3, f4, f5, f6]T )
T

is equal to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

f0 f0 f0 f0 f0 f0 f0

f1e
2
7
iπk1 f1e

2
7
iπk2 f1e

2
7
iπk3 f1e

2
7
iπk4 f6e

2
7
iπ`1 f6e

2
7
iπ`2 f6e

2
7
iπ`3

f2e
4
7
iπk1 f2e

4
7
iπk2 f2e

4
7
iπk3 f2e

4
7
iπk4 f5e

4
7
iπ`1 f5e

4
7
iπ`2 f5e

4
7
iπ`3

f3e
6
7
iπk1 f3e

6
7
iπk2 f3e

6
7
iπk3 f3e

6
7
iπk4 f4e

6
7
iπ`1 f4e

6
7
iπ`2 f4e

6
7
iπ`3

f4e
8
7
iπk1 f4e

8
7
iπk2 f4e

8
7
iπk3 f4e

8
7
iπk4 f3e

8
7
iπ`1 f3e

8
7
iπ`2 f3e

8
7
iπ`3

f5e
10
7
iπk1 f5e

10
7
iπk2 f5e

10
7
iπk3 f5e

10
7
iπk4 f2e

10
7
iπ`1 f2e

10
7
iπ`2 f2e

10
7
iπ`3

f6e
12
7
iπk1 f6e

12
7
iπk2 f6e

12
7
iπk3 f6e

12
7
iπk4 f1e

12
7
iπ`1 f1e

12
7
iπ`2 f1e

12
7
iπ`3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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The monomial isolated in the proof of Proposition 12 to show that

det (δΛ ((f0, f1, f2, f3, f4, f5, f6)T ))

is a non-trivial polynomial is: f0f 2
1 f

2
2 f

2
3 . The coefficient of f0f 2

1 f
2
2 f

2
3 in the

polynomial det (δΛ ((f0, f1, f2, f3, f4, f5, f6)T )) is given by

(3.12)

RRRRRRRRRRRRRRRRRRR

1 1 1 1

e
2
7
iπk1 e

2
7
iπk2 e

2
7
iπk3 e

2
7
iπk4

e
4
7
iπk1 e

4
7
iπk2 e

4
7
iπk3 e

4
7
iπk4

e
6
7
iπk1 e

6
7
iπk2 e

6
7
iπk3 e

6
7
iπk4

RRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRR

e
8
7
iπ`1 e

8
7
iπ`2 e

8
7
iπ`3

e
10
7
iπ`1 e

10
7
iπ`2 e

10
7
iπ`3

e
12
7
iπ`1 e

12
7
iπ`2 e

12
7
iπ`3

RRRRRRRRRRRRRRR

.

Furthermore, with some formal calculations, it is easy to see that (3.12) is
equal to

− (e 2
7
iπk1 − e 2

7
iπk2) (e 2

7
iπk1 − e 2

7
iπk3) (e 2

7
iπk1 − e 2

7
iπk4)

(e 2
7
iπk2 − e 2

7
iπk3) (e 2

7
iπk2 − e 2

7
iπk4) (e 2

7
iπk3 − e 2

7
iπk4)

(e 8
7
iπ`1e

3
2
( 8
7
iπ`2)e

5
4
( 8
7
iπ`3) − e 8

7
iπ`1e

5
4
( 8
7
iπ`2)e

3
2
( 8
7
iπ`3)

− e 3
2
( 8
7
iπ`1)e

8
7
iπ`2e

5
4
( 8
7
iπ`3) + e 3

2
( 8
7
iπ`1)e

5
4
( 8
7
iπ`2)e

8
7
iπ`3

+e 5
4
( 8
7
iπ`1)e

8
7
iπ`2e

3
2
( 8
7
iπ`3) − e 5

4
( 8
7
iπ`1)e

3
2
( 8
7
iπ`2)e

8
7
iπ`3) .

3.1. Proof of Theorem 1. The proofs of Part 1 and 2 of Theorem 1 follow
from Corollary 8, Proposition 12 and Lemma 3.

3.2. Proof of Theorem 2. Let τ be a unitary irreducible representation of
D2n. The classification of the irreducible representations of the Dihedral group
is well-understood (see Page 36, [9]). When n is even, then up to equivalence
there are four one-dimensional irreducible representations. When n is odd,
up to equivalence there are two one-dimensional irreducible representations
of the Dihedral group. If τ is an irreducible representation of D2n which
is not a character then it is well-known that τ must be a two-dimensional
representation obtained by inducing some character of the normal subgroup
generated by r to D2n. If τ is a character then Part 1 holds obviously. In fact,
for any nonzero vector v ∈ C, the set τ (D2n) v has the Haar property. Now,
suppose that τ is not a character. Furthermore, assume that n is odd. Then
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there exists j, 1 ≤ j ≤ n − 1 and a realization of the representation τ such that
τ = τj, where

(3.13) τj (r) = ( e
2πji
n 0

0 e−
2πji
n

) and τj (s) = ( 0 1
1 0

) .

Similarly, in the case where n is even, there exists j, j ∈ {1,⋯, n − 1}−{n
2
} such

that τ = τj is as described in (3.13). For Part 2, assume that n is prime. There

are three main cases to consider. Let v = ( v1 v2 )T ∈ C2. Let us suppose

that M = τ (r)k1 ,N = τ (r)k2 such that k1 ≠ k2 and k1, k2 ∈ Zn. Then

∣ Mv Nv ∣ = ∣ v1e
2iπ j

n
k1 v1e

2iπ j
n
k2

v2e
−2iπ j

n
k1 v2e

−2iπ j
n
k2

∣ = 2iv1v2 sin(2πj (k1 − k2)
n

) .

Next, let us suppose that M = τ (r)k1 ,N = τ (rk2s) where k1, k2 ∈ Zn. Then

∣ Mv Nv ∣ = ∣ v1e
2iπ j

n
k1 v2e

2iπ j
n
k2

v2e
−2iπ j

n
k1 v1e

−2iπ j
n
k2

∣

= (v2
1 − v2

2) cos(2πj (k1 − k2)
n

) + i (v2
1 + v2

2) sin(2πj (k1 − k2)
n

) .

Finally, let us suppose that

M = τ (rk1s) ,N = τ (rk2s)
such that k1 ≠ k2 and k1, k2 ∈ Zn. Then

∣ Mv Nv ∣ = ∣ v2e
2iπ j

n
k1 v2e

2iπ j
n
k2

v1e
−2iπ j

n
k1 v1e

−2iπ j
n
k2

∣ = 2iv1v2 sin(2πj (k1 − k2)
n

) .

Next, it is easy to check that the polynomials

p (v1, v2) = 2iv1v2 sin(2πj (k1 − k2)
n

) ,

and

(3.14) p′ (v1, v2) = (v2
1 − v2

2) cos(2πj (k1 − k2)
n

)+i (v2
1 + v2

2) sin(2πj (k1 − k2)
n

)

are all non-trivial whenever n is prime. Indeed, if n is prime, k1 − k2 ∈
{1,⋯, n − 1}, j ∈ {1,⋯, n − 1} , then the real number 2πj(k1−k2)

n can never be
equal to π` where ` ∈ Z. So, p (v1, v2) is a nonzero homogeneous polynomial
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in v1, v2. Next, since the coefficient of the monomial v2
1 in (3.14) is given by

ei
2πj(k1−k2)

n then p′ (v1, v2) is a nonzero homogeneous polynomial as well. So
when n is prime, for any distinct matrices M,N ∈ τ (D2n) , the set {Mv,Nv}
is linearly independent for almost every v ∈ C2. For Part 4, let us assume that n
is an odd composite number. Then there exist odd natural numbers n1, n2 ∈ N
such that n = n1n2 and nk ∉ {1, n} . Next, we observe that

⎛
⎝
e

2πn1i

n1n2
×n2 0

0 e
− 2πn1i

n1n2
×n2

⎞
⎠
− ( 1 0

0 1
) = ( 0 0

0 0
) .

So for any vector v ∈ C2, the set {v, τn1 (rn2) v} is linearly dependent. Now,
let us consider the representation of the Dihedral group τ1 defined such that

τ1 (r) = ( e
2πi
n 0

0 e−
2πi
n

) and τ1 (s) = ( 0 1
1 0

) .

For distinct matrices M,N ∈ τ (D2n), either

∣ Mv Nv ∣ = 2iv1v2 sin(2π (k1 − k2)
n

) , k1 − k2 ∈ {1,⋯,m − 1}

or

∣ Mv Nv ∣ = (v2
1 − v2

2) cos(2π (k1 − k2)
n

) + i (v2
1 + v2

2) sin(2π (k1 − k2)
n

) ,

where k1, k2 ∈ {1,⋯, n − 1} . Since n is assumed to be odd and because k1 −
k2 ∈ {1,⋯, n − 1} ; it is easy to see that 2iv1v2 sin (2π(k1−k2)

n ) is a non-trivial

homogeneous polynomial. To show this, let us suppose that for k = k1 − k2,
2πk
n = π` for some ` ∈ Z. Then k = 1

2n`. Since n is odd then ` = 2`′ for some
`′ ∈ Z. It follows that k is a multiple of n, and this is impossible. Next, the
fact that

(v2
1 − v2

2) cos(2π (k1 − k2)
n

) + i (v2
1 + v2

2) sin(2π (k1 − k2)
n

)

is a nonzero polynomial was already proved for Part 2. Finally for Part 3, let
us assume that n = 2j is even, and j ∈ {1,⋯, n − 1} − {n

2
}. If j is odd, then it

is easy to see that

( 1 0
0 1

) + ( e
2πji
n

n
2 0

0 e−
2πji
n

n
2

) = ( 0 0
0 0

) .
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Also, if j is even then

−( 1 0
0 1

) + ( e
2πji
n

n
2 0

0 e−
2πji
n

n
2

) = ( 0 0
0 0

) .

Thus it is not possible to find a vector in C2 such that for any distinct matrices
M,N ∈ τ (D2n) , the set {Mv,Nv} is linearly independent. This completes the
proof.

4. Examples

Example 14. Let n = 3. For any subset Λ of Σ of cardinality 3, it is not too
hard to see that the polynomial det (δΛ ((1, z, z4)T )) is a nonzero polynomial of
degree at most 8 in the variable z. Thus, given any algebraic number x of degree

at least 9 over the cyclotomic field Q (e 2πi
3 ) or given any transcendental number

x, x cannot be a root of the polynomial det (δΛ ((1, z, z4)T )). It follows that

the set ΓF−1 (1, z, z4)T is a frame in C3 which is maximally robust to erasures.
For example, if z = π then

v = F−1 (1, z, z4)T =
⎛
⎜⎜
⎝

√
3 (1

3π +
1
3π

4 + 1
3
)

− (π−1)(
√

3π−3iπ+
√

3π2+
√

3π3−3iπ2−3iπ3+2
√

3)
6

− (π−1)(3iπ+
√

3π+
√

3π2+
√

3π3+3iπ2+3iπ3+2
√

3)
6

⎞
⎟⎟
⎠

and Γv is a frame in C3 which is maximally robust to erasures.

Example 15. Let n = 5. Put

v = ( i −i 1 1 + i 2 − i )T .
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Using Mathematica, we are able to show that Γv is a frame in C5 which is
maximally robust to erasures. Put

MΓ (v) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

i −i 1 1 + i 2 − i
2 − i i −i 1 1 + i
1 + i 2 − i i −i 1

1 1 + i 2 − i i −i
−i 1 1 + i 2 − i i
i 2 − i 1 + i 1 −i
−i i 2 − i 1 + i 1
1 −i i 2 − i 1 + i

1 + i 1 −i i 2 − i
2 − i 1 + i 1 −i i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Each row of the matrix above corresponds to an element of the orbit of v. Thus
every sub-matrix of MΓ (v) of order five is invertible.
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