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Galaxies? 

Abstract: 

 The ability for weak lensing observations to constrain the commonly used 

Navarro, Frenk and White (NFW) density profile for galaxy clusters was examined by 

creating “mock” data similar to current or near future telescope capabilities and 

attempting to reconstruct the NFW density parameters as one would in practice.  The 

shearing and magnification of images distorted by weak gravitational lensing was derived 

by integrating the geodesic deviation and optical scalar equations along the null geodesics 

connecting the observer to a distant source. We determined the level of expected 

accuracy of lensing to recover lens profile parameters in current measurements by 

performing a Monte Carlo simulation of the data. We find a large spread in parameters 

values, all clustered around the corrected total mass. Also, we find that current and near 

future telescope capabilities cannot constrain the lens profile truncation mechanism. The 

lens profile truncation mechanism will be well constrained by future telescope with 

approximately less than 10% of the current error levels in the averaged observed 

ellipticity.  This implies a significant advance in telescope technology will be required in 

reducing the atmospheric effects and telescope mirror and CCD errors that cause the 

observed images to be smeared relative to the “true sky” before weak lensing 

observations can tell us how galaxy cluster mass density is truncated.  

 

 



I. Introduction 

 Galaxies are usually not found randomly dispersed in the universe. Most of them 

are part of groups of 10-50 clusters or more (sometimes much more). This has to do with 

how galaxies form to begin with. Our best understanding is that very early in the 

universe's history, the universe was filled with billions of photons, hydrogen atoms, 

helium and very little other normal matter. Also, there was a lot of dark matter, which we 

do not know much about other than that it is gravitating matter that is hard to detect. Most 

of these elements were smoothly spread out, almost perfectly evenly across the entire 

universe. But there were very, very small perturbations in the density. Those 

perturbations collapsed due to gravitational attraction. The process that led to small 

perturbations to become bigger and bigger clumps led to forming stars, then galaxies, and 

then clumps of galaxies. Most of the matter ended up in groups, clusters of galaxies, just 

by naturally following the gravitational attraction of matter on itself. 

We can do numerical simulations of this process. On average, what happens is 

that we get a spherical matter distribution with a density nfwρ which is the density found 

by Navarro, Frenk, and White (NFW density profile). When we look at actual galaxies 

and clusters of galaxies, they do indeed appear to follow the NFW profile on average.  

However, there is a problem. If we try to integrate the total mass of the NFW 

profile 

M = 4π r2

0

∞

∫ ρNFW dr                                                                                              (1) 



We find that the total mass of an NFW profile is infinite. It needs to be finite, however, 

because one clump of matter cannot have infinite mass.  

So somehow the numerical simulations that track these particles in the work of 

NFW go astray at large radii. What we have to do is "truncate" the NFW profile, by 

multiplying it by a factor that is close to 1 at "small" radii but it is 2/1 r  or more at large 

radii. 

  

Figure1: Yellow blobs are the clusters and blue ellipses are same galaxy multiply imaged. See how shape differs but 

it is always elliptical and oriented tangent to a circle. 

Gravitational lensing is a phenomenon that occurs when an object, like a cluster 

of galaxies, acts as a lens between the light source and the observer. For instance, when 

light comes from a source and travels past galaxies or clusters of galaxies between the 

light source and the observer, it bends to follow the path of the curvature of space caused 

by the warping of space-time. Hence, gravitational lensing probes the distribution of 

matter in a galaxy or cluster. In particular, the appearance of background galaxies is 

distorted by the gravity of the cluster. How much bending or distortion we see tells us 



about the mass and mass distribution of the lens. The same thing is true for an object you 

look at behind a piece of glass. If the object has a shape you know, when you look at it 

through the glass, you can tell how the glass is shaped. 

General relativity, which states that the presence of any mass bends the path of 

light passing near it, consequently leads to the production of the giant arcs and multiple 

images associated with strong gravitational lensing. But most lines of sight in the 

universe are in the weak lensing regime where the effects of general relativity are very 

small. In the weak lensing regime, the distribution is impossible to detect in a single 

background source. However, if we average over many background sources, we can still 

detect the presence of lensing as a systematically alignment of the background source 

shapes around the lensing mass. Thus, weak gravitational lensing is a statistical 

measurement. 

Observational weak lensing is a major area of research where the mass properties, 

including the total mass and mass density profile, are measured from the distortion of 

shapes of distant galaxies behind the lens.  In the present work, I investigate if weak 

gravitational lensing observations can tell how the matter distribution of a cluster of 

galaxies is truncated.  I do this be creating “mock” data with noise that simulates current 

or future weak gravitational lensing observations and reconstructing the parameters that 

model the lens’s matter distribution.  

II. Methods 

 A particular lensing situation involves setting a hypothetical lens at a certain 

redshift and fixing parameters of model -- including how the lens is truncated. This will 



enable us to compute the “true” distortion due to this lens. We can then add noise to our 

true shape that simulates the typical error in real observations. The amount of noise we 

add will depend on assumptions we will make about the seeing of future telescopes and 

the number of background galaxies that future telescopes will detect. 

After adding noise, we will attempt to fit “signal plus noise” to a truncated NFW 

model's prediction (try to find parameters that we set initially). In the absence of adding 

noise, we can recover the initial parameters exactly. But with the noise that we added to 

model observational error, there will be a range of parameters that provide “good” fits to 

the data. 

After fitting signal plus noise, we are ready to examine how well constrained 

these models are. An important question for us is whether the fits to the simulated weak 

lensing observations are very good -- tightly constrain the possible model parameters -- 

or not.  

III. Weak Lensing Equations 

  Numerical modeling of dark matter haloes, as found in Navarro et al. 

1997, predicts a density of the form 

    
ρ(r)

ρcrit

=
δc

r
rs( )1+ r

rs( )
2

 ,                                                                                                       (2)                        

 which is also known as the NFW model. Here, ρcrit  is the critical density given by

ρcrit =
3H(z)2

8πG
,                                                                                                                   (3) 



in terms of the gravitational constant and Hubble’s constant at the lens redshift, rs , is a 

scale radius defined as the peak of r
2ρ(r)  and is a characteristic radius of the cluster. We 

take the Hubble constant H0 = 70  km/s/Mpc, the matter density Ω∧ = 0.7 =1 − Ωm . Here, 

δc  is a characteristic over density for the halo, and ρcrit  is the critical density for closure 

of the universe at the redshift, z , of the halo, H(z)  is at the same redshift, and G is 

Newton’s constant [6]. A “virial” radius is defined as the radius r200 of the sphere with 

mean density equal to 200ρcrit .   

 In our numerical simulations, we use c as the halo’s concentration and it’s defined 

as r200 /rs ≡ c . This concentration parameter is related to the characteristic density contrast 

by  

δc =
200

3

c 3

log(1+ c) − c /(1+ c)
.                                                                                           (4) 

For our modeling we take rs = 0.25  Mpc, c = 7.31505  and set τ = 3c which ensures good 

agreement between the NFW model and the truncated NFW model within the virial 

radius [6]. We place the lens at zs = 0.25796, and the total mass for this parameter choice 

is 15100.2 × solar masses. We find an average background redshift of all the sources to 

compute the projected matter density by specifying an average Ds , Dl , and Dls  in ∑crit . 

This is because the measured gravitational shear is directly related to the dimensionless 

projected matter density k(θ) , given by  

 ∑crit =
c 2Ds

4πGDlDls

.                                                                                                             (5) 



In this case, it applies for angular diameter distances to the lens, source, and between the 

lens and source [6]. Consequently, the lens mapping depends on the bending angle, which 

is the gradient of the projected gravitational potential. Thus, the Jacobian of the lens 

mapping  

  Α =
1−κ − γ1 −γ 2

−γ 2 1−κ + γ1

 

 
 

 

 
 ,                                                                                             (6) 

controls weak lensing image distortion. The strategy then is to use the inverse Jacobian 

matrix, A−1
, to map small vectors from the source plane to the lens plane or image plane. 

The fact that the two eigenvalues of A will be different in general implies that a circular 

source will be imaged, to first approximation, into an ellipse.        

 The eigenvalues of A are 1 − k± |γ |. The axis ratio of the elliptical image of a 

circular source is given by the ratio of these two eigenvalues. Acting on a circular 

background source with certain radius, lensing generates an ellipse with major and minor 

axes as long as the shear and convergence do not change over the size of the source. The 

eigenvectors of the matrix indicate the directions of stretching and contraction due to 

lensing, and the eigenvalues give the magnitudes of the lengths of the semi-axes [6]. The 

formation of a circular source with unit area is mapped into an ellipse when setting 

γ = γ1

2
+γ 2

2
. The ellipse then has a unit area of 

  Atl =
1

(1−κ)
2 − γ 2

,                                                                                                          (7)                 

   and the ratio of the semi-axes is 



    

€ 

Rtl =
1−κ + γ

1−κ − γ
.                                                                               

If the matter distribution is axially symmetric, then

€ 

γ(x) =
∑ (x) −∑(x)

∑crit

                                                                            

where 

€ 

∑ (x)  is the average projected mass density inside a circle of radius 

particular lensing simulation, we use the expression for the projected mass densities and 

€ 

γ  as prescribed by Baltz et al  [6]. 

 In the presence of convergence and shear, a circular source becomes elliptical in 

shape. The convergence term magnifies the background objects by increasing their size, 

and the shear term stretches them.  The ellipticity,

semi-minor to semi-major axes, and it is given b

  

€ 

ε =
1 −1/ratio

1+1/ratio
 .                                                                                                         

To measure the tangential alignment around the foreground mass caused by the 

convergence and shear, it is necessary to measure the ellipticity of individual images and 

construct a statistical estimate of their systematic alignment. That is, if we average over 

the ellipticity of images predicted by the thin lens approximation we can detect the 

presence of lensing as a systematically alignment of the background source shapes 

around the lensng mass.  

                                                                                                       

If the matter distribution is axially symmetric, then 

                                                                                                           

is the average projected mass density inside a circle of radius 

€ 

particular lensing simulation, we use the expression for the projected mass densities and 

as prescribed by Baltz et al  [6].  

VI. Noise 

In the presence of convergence and shear, a circular source becomes elliptical in 

shape. The convergence term magnifies the background objects by increasing their size, 

and the shear term stretches them.  The ellipticity, , is defined in terms of the ratio of the 

major axes, and it is given by 

.                                                                                                         

To measure the tangential alignment around the foreground mass caused by the 

it is necessary to measure the ellipticity of individual images and 

construct a statistical estimate of their systematic alignment. That is, if we average over 

the ellipticity of images predicted by the thin lens approximation we can detect the 

lensing as a systematically alignment of the background source shapes 

                               (8)  

                               (9) 

is the average projected mass density inside a circle of radius x . For this 

particular lensing simulation, we use the expression for the projected mass densities and 

In the presence of convergence and shear, a circular source becomes elliptical in 

shape. The convergence term magnifies the background objects by increasing their size, 

ed in terms of the ratio of the 

.                                                                                                            (10)                                         

To measure the tangential alignment around the foreground mass caused by the 

it is necessary to measure the ellipticity of individual images and 

construct a statistical estimate of their systematic alignment. That is, if we average over 

the ellipticity of images predicted by the thin lens approximation we can detect the 

lensing as a systematically alignment of the background source shapes 



 To average ellipticity measurements, we set up annular bins with equal width that 

in some way cover the shape of the cluster. The error that we observe in the averaged 

observed ellipticity is estimated by the number of objects averaged over and the intrinsic 

ellipticity dispersion,σε , as σ = σε / N . Typical values of σε  are about 0.3 [4], which 

accounts for the instrumental and atmospheric effects that cause the observed images to 

be smeared relative to the “true sky”.  Thus, we set up fifteen annular bins of equal width 

with the center of the first bin at 100-arc sec and the center of the last bin at 600-arc sec, 

which corresponds to typical dithering of ground-based, wide field telescopes today.  We 

also consider 25 annular bins between 100 and 900 arc sec, which could be done today 

with different telescope pointing.  

 In the Navarro, Frenk and White (NFW) profile, it is convenient to define 

x = r /rs, in order to get the NFW profile in a simpler form.  The truncated version of the 

NFW model proposed by Baltz is 

ρ(x) =
M0

4πrs

3

1

x(1+ x)2

τ 2

τ 2 + x 2
.                                                                                        (11)        

Here, we define the truncation radius to be a factor of τ  larger than the scale radius.  

 For the purposes of our weak lensing simulations, we are interested in the 

projected mass density. We first define the function 

F(x) =

cos−1(1/ x)

x
2 −1

x >1

Log (1/ x) + (1/ x)2 −1[ ]
1 − x

2
x <1

 

 

 
 

 

 
 

.                                                                       (12) 



We also define the following logarithm, 

  L(x) = Log
τ 2 + x 2 −1

x

 

 
 
 

 

 
 
 
.                                                                                            (13) 

With these definitions, the projected surface mass density is given by [6]

∑(x) =
M0

rs

2

τ 2

2π(τ 2 +1)
2

τ 2 +1

x
2 −1

[1− F(x)]+ 2F(x) −
π

τ 2 + x
2

+
τ 2 −1

τ τ 2 + x
2

L(x)
 
 
 

 
 
 
.          (14) 

 The strategy then is to derive the convergence, κ , the shear, γ , and get the 

projected mass. We can derive κ  by taking κ =∑ /∑crit . The projected mass inside radius 

x , is 

M proj(x) = M0

τ 2

(τ 2 +1)2
[τ 2 +1+ 2(x 2 −1)]F(x) +τπ + (τ 2 −1)lnτ + τ 2 + x 2 −π +

τ 2 −1

τ
L(x)

 

 
 

 

 
 

 
 
 

 
 
 

To derive the shear, we use the mean projected surface density inside radius x , which is

∑ = M proj /πr
2 . If we define Γ = ∑ −∑, the shear then is γ = Γ/∑crit .  

VII. Fitting Noise 

 Hence, by picking up lens parameters we can model the ellipticity profile using 

the thin lens approach of image distortion using χ2
 minimization [9].  To this end, we use 

a Levenberg Marquardt fit based on the implementation in [4]. Thus, let ε i  be the 

averaged ellipticity measurements (as given by Eq.10) and ai  be the lens parameters 

which in this case can be (c,rs)  or (c,rs,τ) if we are fitting for three parameters. The χ2
 

function then is 



     χ2 =
ε i −ε (x;ai)

σ i

 

 
 

 

 
 

2

i=1

N

∑ ,                                                                                              (16) 

where ai  is the correspondent parameters. Taking its first derivative with respect to the 

parameter a, we can notice that the first derivative will be zero at the χ2
minimum and has 

components 

 
∂χ 2

∂ak

= −2
[ε i − ε(x i;a)]

σ i

2

∂ε(x i;a)

∂aki=1

N

∑ ,                                                                         (17) 

For our particular weak lensing simulations, it depends on the set of three unknown 

parameters, k, where ak =1,2,3.  

VIII. Results 

 The matter density, with the parameters (c,rs,τ), is projected into the lens plane 

and the thin-lens κ  and γ  is computed. We found that in the absence of adding noise, we 

recover the initial parameters exactly. Figure 3 shows how much (c,rs)  can vary because 

of noisy data. Thus, we examined how well constrained NFW profile density model fits 

are given current telescope capabilities – with the concentration parameter on the vertical 

axis and the scale radius on the horizontal axis.  The shape of this spread is dictated by 

holding the total mass of the profile roughly constant – highly concentrated but smaller 

clusters or lower concentration spread out over a larger area. 



Figure 3: One realization of lensing with 100 different noises. This is 100 examples of noise data where we solve for 

values.  
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Figure 4: Plot of the thin-lens approximation best fit 

of noise. The horizontal axis represents the 
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VII. Conclusion 
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 We repeated experiment over at different noise parameters, and different model 

parameters. We understood that the amount inherited error leads to wide range in (c,rs)  

best-fit values. This wide range found in (c,rs)  best fit values imply that it will be hard to 

fit for (c,rs,τ). This result leads us to conclude that current and near future telescope 

capabilities cannot constrain the lens profile truncation mechanism. 

  Using the thin-lens approximation and a truncated NFW profile that has been 

projected into the lens plane, and a Levenber-Marquardt fit based on the implementation 

in [4], we find the best-fit parameters (c,rs)  while varying τ . As showing in these 

figures, we find very little dependency of parameters (c,rs)  that explains why current and 

near future telescope capabilities cannot constrain the lens profile truncation mechanism.  

 Giving these findings, we increased telescope resolution to σ = 0.03 in an attempt 

to examine future telescope capabilities to constrain (c,rs,τ) parameters. We find that the 

lens profile truncation mechanism will be well constrained by these future telescopes. 
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