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Abstract:

Gravitational lensing in a phenomenon that occurs when light’s path from a source to an observer is bent around a massive object or group of objects such as a star, galaxy, or group of galaxies, due to the general relativistic warping of space-time near those objects.  The massive objects act as a lens for the light source seen by an observer, resulting in distorted images or even several images of the same light source.  If there are multiple massive objects or clusters of objects between the light source and observer they may be at different distances from the observer.  In practice, these objects are compressed into different lens planes, but the compression is unphysical.  Our methods allow us to examine how much error is made by introducing the compressed lens planes, by using numerical programming techniques to integrate paths of light rays as they travel actual curved paths through curved space around lenses.  These are the exact paths predicted by general relativity.  To date, our project has successfully integrated light rays, and we can find image positions. Preliminary results on the comparisons between the exact path and thin lens indicate that some numerical coding errors may be present.
Introduction to General Relativity:

General relativity proposed that there can be no distinction between feelings of acceleration and of gravity.  With this comes a family of preferred observers for physical situations, those who feel no effects of gravity, or equivalently are in free fall.  The local metric for these observers is the same as the metric in Special relativity and is as follows:
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Any observers who are not in free fall will see gravity and a coordinate transform between free fall and non-freefall observers on the metric gives the gravity components.  A general question is given some mass/energy density, can one find the metric?  In order to do this one must solve the Einstein field equations
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Which in the presence of a weak gravitational field, one in which the escape velocity is much, much less than the speed of light, we assume that the metric is


[image: image3.wmf])

)(

2

1

(

)

2

1

(

2

2

2

2

2

dz

dy

dx

dt

ds

+

+

-

-

+

=

j

j


This metric becomes the basis for the Lagrangian we will use to find light rays.  With this metric, the Einstein field equations reduce to the Classical Newtonian result 
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This is referred to as Poisson’s equation and is an example of how things in General relativity such as gravitational potentials reduces to classical behavior when conditions are similar to those which we experience on Earth such as weak gravitational fields.  

Intro to Gravitational Lensing

General relativity suggests that gravity is not a force between two objects but that space-time is warped around massive objects and that gravitation occurs when objects follow a straight line path in this curved space.  This not only applies to objects moving through space but to light (which can actually be thought of as a bunch of tiny objects known as photons) traveling from a light source to an observer.  Photons will always follow the path of least distance between two points which happens to this “straight line” path through curved space called a geodesic which can be described mathematically.  For example the simple geodesic for a flat two dimensional plane is a straight line, and the distance traveled is determined by the metric:  dr2 = dx2 + dy2.  In four dimensional space-time a similar metric equation can be derived, and that metric determines what a “straight” line is.
When light from a distant bright object in space travels past a cosmologically massive object such as a galaxy between the light source and an observer, the light bends to follow the path of the curvature of space caused by the warping of space-time near that massive object. The object acts as a lens between the light source and the observer in this phenomenon known as Gravitational lensing.  

In some cases light rays will take more than one path around the massive object which is acting as a lens, and an observer will see multiple images of the light source—none of which are in the actual position of the source, or if the light source the massive object and the observer are in line the observer may even see the light source as a ring rather than a point image, this is referred to as an Einstein ring.  These are instances of strong gravitational lensing.  In some instances there may only be distortions of images of a light source such as elongation, this is an instance of weak gravitational lensing.  
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Figures:  from chandra.harvard.edu/photo/2004/h1413/more.html and www.gsfc.nasa.gov/ respectively.  On left, the one source sends light rays in multiple directions that turn and are seen as 4 different images.  On right, an actual example of an Einstein ring, this occurs if the source is aligned directly behind the lens.
Sometimes there may be multiple massive objects acting as lenses between the light source and the observer which may be distantly separated in space or not in the same “lens plane”.  The typical modeling of such gravitational lensing is that light travels in straight lines from the source to a lens plane, changes directions instantly, travels to a new lens plane, changes directions instantly again, and so on until the light reaches the observer.  In reality, what happens is that the light ray takes a constantly curving path, described by the geodesics from general relativity.
 Equations of Motion:
The Euler-Lagrange equation can be used to find the paths of motion for a given system.  These equations stem from the techniques of the calculus of variations in which the basic problem is to determine the function y(x) that makes the integral
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have either a maximum or a minimum value locally, compared to “neighboring functions”.  In this way the Euler-Lagrange equation allows one to determine the path of motion that gives extremum solutions such as the shortest distance or shortest time of travel between two points.  The Euler-Lagrange equation itself is
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This is a differential equation that is a necessary condition for the function y(x) that ensures that J takes on extreme values.  One useful application of these equations to find extremum values is in finding geodesics.  A geodesic is a line that gives the shortest path taken by traveling on a particular surface.  This is just a straight line when the surface involved is a plane, but these geodesics change for curved surfaces such as the great circles being the shortest path able to be taken on the surface of a sphere.  The Lagrangian is used to describe the motion of particles, and it can be used in our case for light—which consists of electromagnetic waves—because of the way the light propagates.  
Propagation of light:

As described by David Griffiths, a wave is “a disturbance of a continuous medium that propagates with a fixed shape and constant velocity” (Griffiths 364).  There are many qualifiers to this statement under various circumstances, but in its most basic form this is what a wave consists of.  In order to represent a wave mathematically let it travel along the z axis at velocity v.  Let f(z,t) be a function representing the displacement of the wave at point z and time t.  Think of the wave as being made from moving the end of a taut string.  The initial shape of the string is given by 
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the shape of the string at time t = 0.  The shape of the string at a later time is given again by f(z,t), and the displacement of the wave in the string at z after time t is:  z – vt.  Now we have:
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This relation is important because it shows that waves must be a function of the direction of propagation (z in this case) minus the velocity of propagation v times the time t.  


For a long string with tension T, displaced from equilibrium, there is a net transverse force on the segment of the string from z to 
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Where 
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’ is equal to the angle the string makes with the z axis at 
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 is equal to the angle the string makes at point z.  These angles will be small when the disturbance of the string is not particularly large, and in such cases of small angles the sine function can be replaced with the tangent function:
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If the mass per unit length of the string is given by 
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 then applying Newton’s second law of 

F = ma now gives:
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and
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We now have an equation describing the propagation of waves, called the wave equation, of the form:
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 EMBED Equation.3  [image: image21.wmf]
Where v is the speed of propagation of the wave which is equal to 
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 in the case of our string.  


Electric and magnetic phenomena are described by Maxwell’s equations, which are as follows for electric fields E, and magnetic fields B, in regions of space where there is no charge or current:
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Now taking the curl of the curl of both E and B and using some of the product rules of vector calculus as in Griffiths gives:
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And since we know that 
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in the equations above the result that comes out is:
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and
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Resulting in two second order differential equations that are independent in E and B respectively.  Upon inspection it is quite apparent that these two equations are in the form of the three dimensional wave equation
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which is the same as the wave equation 
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found above.  This indicates that in a vacuum (where there is neither charge nor current), E and B both satisfy an equation of a wave having a speed of propagation:
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This speed is equal to the value of c, the speed of light.  There is a reason for this; it is not coincidence.  Light actually consists of electromagnetic waves.  These electromagnetic waves are transverse in nature, with E and B perpendicular to each other and in phase.  The electric and magnetic fields are perpendicular to the direction of propagation of the waves (Griffiths 375).   


The solutions to the E and B wave equations can be expressed as either a combination of sines and cosines as 
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or as complex exponentials 
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which are the general forms of waves.

Rays are curves whose tangents at each point along a wave coincide with the direction of propagation of the wave.  When speaking about the motion of light, the concept of light rays is often used to describe the path that the light takes.  Geometrical optics is the study of the laws that govern the propagation of light rays.  Light waves being studied are considered in the limiting case of very high frequencies where the wavelength 
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.  To get an equation for determining the direction of light rays consider the quantity f as done by Landau and Lifshitz (Landau 136), which describes the field of a wave (in the case of light waves this could be either the E of B field).  This quantity is given using the complex exponential form of the wave solution by:
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We express this quantity as 
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where a is equal to the amplitude which is usually a function of the spatial coordinates, time, and phase 
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 is called the eikonal.  The eikonal must be a large quantity in order to correspond with the high frequency limit where 
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.  One can take a series expansion of the eikonal to get
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now comparing this expansion with the equation for f shown earlier gives
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These go along with the fact that in small regions of space these waves can be considered plane.  The 4-dimensional form of the equation for k is expressed as
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where ki is the 4-vector for the light wave whose components are related by 
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The above is called the eikonal equation, and is the fundamental equation of geometrical optics which is applied to the propagation of light both in a vacuum, and in general form, the propagation of light through matter.  

The form of the eikonal equation is very useful in leading to an correspondence between geometrical optics and classical mechanics of material particles.  The motion of a particle is described by the Hamilton-Jacobi equation as
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where S is the action, A is the 4-vector of the vector potential, e is the particles charge, m is the particle’s mass, and c is the speed of light.  Both this equation and the eikonal equation are second degree equations in the first partial derivatives.  The action S is related to the particle’s momentum p and to the Hamiltonian H of the particle by the following equations
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These equations look very much like the equations for the wave vector k and the frequency 
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 of a wave as shown earlier.  This similarity is indicative of the fact that the wave vector serves the same purpose in geometrical optics as the momentum does in the mechanics of a moving particle, and the same relation holds between the frequency and the Hamiltonian in that they are both the energy of the wave/particle.  The wave vector k has an absolute magnitude k related to the frequency by the formula 
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.  This is an equivalent formula to the relation between the momentum and energy of a particle with zero mass traveling at the speed of light given by 
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.  This relationship makes sense when considering the wave-particle duality of light; the equations describing the wave motion of electromagnetic waves must correspond to the equations describing the motion of photons (these particles with zero mass traveling a the speed of light), in order for the two to describe different aspects of the same phenomenon.  


The Hamilton equations for a particle are 
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and now the equivalent equations for light rays are
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To check these equations for light rays for consistency with known principles, consider the case in a vacuum where 
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, where n is a unit vector along the direction of propagation (Landau 136-138).  This means that according to these equations, light rays in a vacuum travel in straight lines with velocity v which we know to be the physical case. In general relativity, near the vicinity of large matter distributions, those straight line paths become curved because of the curvature of space-time. They are following the geodesics which in that curved space-time really are “straight-line” paths. 


The correspondence between the equations of motion for particles and the equations of motion for light rays is of particular usefulness because it allows us to treat light rays as moving particles when modeling their motion.  This in turn allows us to use the principles of motion for particles such as the Lagrangian, in order to trace out the paths of light rays as they travel through space from a light source to an observer.

Lensing Lagrangian:

For this project, the Lagrangian being used comes from the metric for the weak gravitational field above with an a as a function of t term added.  This function determines the cosmology we are dealing with and is called the scale factor.  It is responsible for the expansion of the universe.  Our Lagrangian is 
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where φ, the gravitational potential of the lens, is a function of x, y, and z.  The function a(t) is taken as:
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In the Lagrangian we used 
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 which is a Newtonian gravitational potential


[image: image69.wmf]ú

ú

û

ù

ê

ê

ë

é

-

-

+

÷

÷

ø

ö

ç

ç

è

æ

-

-

÷

÷

ø

ö

ç

ç

è

æ

+

+

+

÷

÷

ø

ö

ç

ç

è

æ

-

-

+

=

t

t

t

p

t

t

t

t

t

t

t

t

j

ln

2

2

)

1

(

1

2

1

)

1

(

)

/

(

1

ln

2

1

)

/

arctan(

)

1

(

)

(

2

2

2

2

2

2

2

0

p

p

p

p

p

s

p

x

x

x

x

x

r

GM

x


This is the three dimensional truncated NFW potential as given in the paper Analytic Models of Plausible Gravitational Lens Potentials by Edward Baltz et. al. [1]

A classical gravitational potential is a scalar function whose negative gradient is equal to the gravitational field vector g.  This can be expressed as 
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Where the gravitational potential is 
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 having dimensions of energy per unit mass.  
[image: image72.wmf]j

 is a potential function of the conservative vector field g (conservative such that curl g = 0 and the domain of the gravitational vector field is simply connected, meaning that any simple closed curve can be shrunk continuously to a point without leaving the domain of g.

The physical significance of the gravitational potential relates to the potential energy of a body and to the work done on a body when it is moved within a gravitational field.  The amount of work done on a body to move it from one position to another in a gravitational field is equal to the difference in potential at the two points.  The potential energy U of a body equals its mass times the potential 
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U = m
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The force on the body is then given by the negative of the gradient of its potential energy
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In classical Newtonian physics one can use the Euler-Lagrange equations and the calculus of variations to get equations of motion that correspond directly to Newton’s laws.  Then for a given physical system one can use the values of force, mass, and acceleration to find what the state of the dynamic system will be after a certain amount of time has passed.  We use the Euler-Lagrange equations in a similar way for this project; to determine where light rays go as they travel through space, but what we get does not involve Newton’s laws but rather the principles of General relativity.  General relativity changes the way we think about gravity from our classical understanding.  Rather than a general force between two bodies, mass distorts space-time and object follow curved paths when moving along these distortions.  Such is the case for the light rays which we are examining.  They are following curved paths through space caused by the matter distributions that are acting as our lenses.  
 

In order to solve for the equations associated with the motion of the light rays in this project we apply the Euler-Lagrange equation to our Lagrangian.  Taking the partial derivative of our Lagrangian L with respect to x and x dot we get
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which is just one of our derivatives being used in an Euler Lagrange equation.  Taking the derivative of L with respect to x we get
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 EMBED Equation.3  [image: image78.wmf])

)(

(

2

2

2

2

2

z

y

x

a

x

x

t

x

L

&

&

&

&

+

+

÷

ø

ö

ç

è

æ

¶

¶

+

÷

ø

ö

ç

è

æ

¶

¶

=

¶

¶

j

j


Each of the variables of x, y, z, and t as well as 
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 has a derivative and they are put into E-L equations of the general form
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Taking the total derivative of the derivative of L with respect to x dot gives
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Setting this equal to 
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Repeating this process for y and z gives
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Now for the t equation we follow the same procedure.  First take the derivative of L with respect to t giving
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Taking the derivative of L with respect to t dot
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Taking the total derivative of this gives
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Now setting this total derivative equal to the derivative of L with respect to t and solving for 
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From these differential equations we then can integrate numerically to find the extreme values we are looking for.  In this case these extreme values will be the locally shortest or longest paths taken by light rays following our geodesics.  The curved surface on which we are looking for the shortest paths is not that of a plane or a sphere, but rather curved space-time that has been warped by cosmologically massive objects.  
Boundary Conditions:


For our differential equations we require boundary conditions in order to solve them for numerical values.  The first four boundary conditions are x, y, z, t, coordinates that dictate the location of the observer in both time and space.  Next, we set t dot to negative one in order to trace the light ray backwards in time.  We also get three boundary conditions from the direction that the light rays are traveling (in x, y, z coordinates) to connect the observer to the source.  In general relativity, for light rays, the value of the Lagrangian is zero.  We use this fact to fix the value of z dot – leaving only two unspecified initial conditions (x dot and y dot).  These two values are equivalent to the initial direction on the sky (say east-west and north-south).  This allows us to plot the path of a light ray starting from the point of the observer and tracing it backwards until it reaches the source position. 

We are interested in determining the how close to the matter distribution light rays must come before the observer begins to see multiple images of the light source.  In order to accomplish this we use the Jacobian matrix of partial derivatives and where its determinant is equal to zero in a region of interest to us.
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The curve given by the determinant of the Jacobian equal to zero in the x dot – y dot plane is called the critical curve.  Outside this curve one will see one image; inside the curve one sees 3 images. Where we compute the derivatives numerically,
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, and the determinant of the Jacobian matrix is
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By programming this into Mathematica and having the software numerically solve for values, we then have solutions which we can plot in an “S” shaped graph.  The long top and bottom ends of the graph are values where there will be only one image (however distorted or non-distorted it may be) and the values on the graph where a vertical line will pass through the top, middle and bottom portions of the S are those where there will be three images of the light source viewed by our observer.  


We next transfer our attention to three dimensional plots and contour plots.  These have an added dimension over the s shaped plot and allow us to work towards determining the locations of the multiple image areas by examining the caustics and critical curves.  The Jacobian allows us to map points in the observer’s frame to the places in the source plane from which these light rays come.  This is the connection between the critical curves (in the observer plane) and the caustics (in the source plane).  

[image: image96.emf]
This is the contour plot obtained from the Jacobian.  The outer and innermost rings are where the value is equal to zero and related to multiple images. 


In order to solve for the locations of multiple images we use two dimensional root finding code to solve our system of two simultaneous equations.  

2-D Root finding for our x and y data.

In order to solve our nonlinear system of equations for two dimensional roots based on the zero contour plots of both the x and y values we followed the Newton-Raphson method as described in Numerical Recipes: The Art of Scientific Computing third edition by William H. Press et. al. [2] The Newton-Raphson method uses the Jacobian matrix above to determine “down-hill” directions that iteratively move towards the roots.

Using this method for a general case of two dimensions we have a set of two equations
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which we want to solve simultaneously.  We can plot the zero contour lines of each of them separately, and these zero contour boundaries are of interest to us.  What they will generally form is a number of disjointed closed curves or regions (one can imagine the lines of zero elevation or sea level on a topographical map for comparison).  The objective is to find the points of intersection of these lines on both contour plots of x and y.  Based on their respective zero contours and the locations of zero value for both functions, there may be no solutions, only one solution, or several solutions where there are points of intersection.  And based on additional information specific to the problem we may expect a particular number of solutions and maybe even have an idea of where we expect to find them, however this information cannot be known for sure until solving numerically.  For our problem we were expecting either three or five solutions. 

[image: image98.emf]
Here is the plot of our x and y zero contours shown together.  The x contours are in blue and gray and the y are in red.  There are three areas of intersection and therefore three solutions to our system of equations.  


Solving for these values using the Newton-Raphson method works sufficiently well when you have an initial guess that is in the region of an actual root.  When this is the case the program moves around the root, getting continually closer until it converges on the solution where the values of both zero contour plots are the same or very nearly the same.  The process we used to code this as given by Numerical Recipes is described below.


Our problem involves 2 functional relations that have been zeroed on contour plots.  We assign vxo and vyo initial numerical values that we believe to be relatively close to the solution.  Next we ran a “for” loop that moved these two values around until their difference was zero, indicating that this was a common point to both plots and therefore a solution.  In order to change the values by appropriate amounts we first found the solution at (vxo, vyo) and then changed the values to:
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Where
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And J-1 is the inverse of the two by two Jacobian matrix of partial derivatives
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The process of assigning old vxo and vyo values new values with the delta factor added is repeated, moving the values around the initial guess point until they converge on a solution.  Doing this with three different initial guesses gave us three different solutions which correspond to the three common points that we can see on the contour plots.  These solutions give us the light source locations we wanted to find for multiple image occurrences.  

After finding these multiple image locations we can then begin to consider the comparison with these exact general relativistic curved paths of light rays and the straight line paths used in the thin lens approximation.  By completing similar calculations in Mathematica using the algebra of the thin lens approximation and seeing how the results differ from our preliminary studies we can examine the amount of error that is being made by using the simpler model of the thin lens and straight lines rather than exact curved paths as described by the geodesics.  

Multiplane Thin Lens Equation:

Using the thin lens equation light travels from the source to the first lens plane where it is immediately deflected at some angle then travels in its new direction to the second lens plane where  it is again instantly deflected to a different angle at which it travels until reaching the observer.  The Multiplane Lens Equation is given in Singularity Theory and Gravitational Lensing by A.O. Petters et. al. [3] as:
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in which s is the source position which is recursively related to the lensed image r1 and 
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 and impact vectors 
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Where i is between 2 and k lens planes; for our purposes we dealt with two lens planes.  This k-lens plane equation can be used to relate the trace light rays backwards from the observer to the impact point on the first plane, then from there directly to the impact point on the next plane, and so on until the light ray reached the impact point on the source plane, the location from where it originated.  

By using these thin lens approximation equations to numerically trace paths of light rays from an observer to a source through two lens planes at different redshifts we can compare our results to those obtained for the same observer source and lens planes as we used for the paths that follow curved paths along the geodesics.  Since the geodesics dictate the true paths that light rays will follow through space, the difference between their results and the results from the thin lens approximation will be the error that is introduce by approximation these two matter distributions acting as lenses as being condensed all into a two-dimensional plane.
Results and Discussion:

At the current time work on this project is ongoing.  We have successfully completed Mathematica code that can integrate light rays from a source to an observer through two lens planes in both the thin lens case and the case in which we follow the true curved paths obtained from the geodesics.  Our goal was to compare the results obtained from each of these codes and to use those findings to evaluate the accuracy of the thin lens approximation, which though it is a simpler model is not exactly a true representation of the physical situation.  We have made this comparison but initially after completing the computer code the difference that we obtained in image locations was quite high, close to twenty percent, and this result was too drastic to be believable indicating that there was an error somewhere in the code.    

After examining the code thoroughly several times we found no glaring errors.  We then changed our approach slightly by fixing the initial observation angle in each of the separate codes and looking for the source angle locations—the opposite of what we had been doing—and this gave us results that seem reasonable for everything except for the root finding.  We could then make plots of the relative differences in image locations when using either the thin lens or non-perturbative cases with moderate confidence in their validity.  We suspected that the problem in root finding was in the 3-D Newton-Raphson code.  There are multiple roots to our equations and we have had problems getting the root finding code to solve for one particular root, so the situation that we thought we had was that the thin lens code is finding one root and the non-perturbative is finding another.  In this situation both codes are finding a correct result but the fact that they are not the same result is the source of the large discrepancies that we are seeing.  Our next efforts were focused on refining the Newton-Raphson section of our code in order to find one particular root at a time.  

The lensing potentials were examined closely to check for any errors and once we were satisfied that there were none, the Newton-Raphson code was modified in such a was as to start at an initial guess that was sufficiently close to a root, then repeat the root finding process until the code found three roots.  The roots were then used to compute source locations and the roots that the root finding code solved for were plotted over the contour plot to see if the numerical roots lined up with the intersections of the x and y contours.  Below is that plot:
[image: image106.emf]
Upon close inspection one can see three green dots at the intersections of the contours.  These green dots are generated from the rootfinding code and line up properly with the contours. What this result means is that there is no error in the rootfinding portion of the code that is used to find image locations.

The thin lens case was examined next and rootfinding code was written for the thin lens equations.  We are able to get roots from this code and make comparisons between the thin lens and the curved path image locations from the NFW gravitational potential lens model at various values for the initial angle of the light rays.  The difference observed between values is dependent on the values of “thetaxsec” and “thetaysec” which set up these light ray initial angles.  The image locations for the thin lens and true path solutions for the initial values of thetaxsec = 12 arc seconds and thetaysec = 8 arc seconds are plotted together below.
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The red dots are the image locations for the thin lens roots, while the black dots are those for the true curved path roots.  The values coincide for the center root which is why only one dot can be seen.  When higher initial angle values are used the differences between the image locations become greater, and the differences in root values are higher than we would expect to be accurate, suggesting that there is probably still a small error somewhere in our coding.  A similar comparison was made using a simpler model for the gravitational potentials, the Singular Isothermal Sphere model (SIS), and the values obtained seem more reasonable.
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