
SOCKET

2/23/2013 Internet Programming 1

abdul sattar

Socket

What is a socket?

A host-local, application-oriented, OS
controlled interface into which an

2/23/2013 Internet Programming 2

controlled interface into which an
application process can both send and
receive messages to and from another
application process.

Working with Sockets

You can use sockets to transfer data
between unrelated processes that can be
running on the same workstation or on
different hosts on a network

2/23/2013 Internet Programming 3

different hosts on a network

Socket Programming

Build Client/Server application that
communicate using socket

2/23/2013 Internet Programming 4

Client/Server programming

� Client connects to an address:port number

� Server is permanently running, listening to
that port

2/23/2013 Internet Programming 5

that port

� server replies to the client

� Client receives the reply

� Differences between servers lie in the kind of
request they expect (protocol) and reply they
send

Client connects to Server

Ports in Server

INTERNET

2/23/2013 Internet Programming 6

123.456.789.001 80 Data
80

CLIENT SERVER

INTERNET

Well Known Ports
port numbers are 16 bit numbers, about 64,000 different ports.

ports 0-256 Internet services,

ports 256-1024 network services

service-name port/protocol aliases
echo 7/tcp
echo 7/udp

2/23/2013 Internet Programming 7

echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users
ftp-data 20/tcp
ftp 21/tcp
telnet 23/tcp
smtp 25/tcp mail
www 80/tcp http
nntp 119/tcp usenet # Network News Transfer
ntp 123/tcp # Network Time Protocol

For complete list goto: http://www.networksorcery.com/enp/protocol/ip/ports00000.htm

Java: InetAddress Class (1)

� Used to represent IP addresses

� Creators
� static InetAddress[] getAllByName(String host)

� Returns the list of all addresses for the specified host

2/23/2013 Internet Programming 8

� Returns the list of all addresses for the specified host

� Static InetAddress getByName(String host)
� Returns an IP address for the specified host

� Static InetAddress getLocalHost()
� Returns an IP address for the local host

� Accessors
� byte[] getAddress()

� Returns 32-bit IP address

Java: InetAddress Class (2)

� Accessors (continued)

� String getHostAddress()

� Returns IP address in dot-decimal notation

2/23/2013 Internet Programming 9

� Returns IP address in dot-decimal notation

� String getHostName()

� Returns canonical name of the host

� boolean isMulticastAddress()

� Returns true if the address is a multicast

� address

Socket API

� Introduced in BCD4.1 UNIX in 1981.

� Explicitly created, used and released by
applications.

2/23/2013 Internet Programming 10

applications.

Socket services

Two types of transport service via socket API

Unreliable, connection-less datagram(UDP)

2/23/2013 Internet Programming 11

� Unreliable, connection-less datagram(UDP)

� Reliable, connection-oriented byte stream(TCP)

Transport layer

Socket-programming using TCP

Create a Socket; (Server socket)

declare a port = x for incoming request; Create a Socket; (client Socket)

Connect it to hostid and port=x

Server running on machine A Client running on machine B

2/23/2013 Internet Programming 12

wait for incoming connection request

read request from

write reply to

close connection

Send request

read reply from

Close connection

Sockets and OOP

� Motivation for object-oriented

programming for network applications

� Software engineering principles

Code reuse, especially through class libraries

2/23/2013 Internet Programming 13

� Code reuse, especially through class libraries

� Hiding programming details in objects

� Sockets classes available in …

� Microsoft Foundation Classes (MFC)

� Java class library

� Other

Sockets and Java

� Java supports high-level abstractions for …
� Network communication

� Internet applications

� Other functions (input/output, conversion,

2/23/2013 Internet Programming 14

� Other functions (input/output, conversion,
compression, user interface, etc.)

� Platform-independent, including operating
system and hardware
� Same client runs on multiple hosts using the JVM

� Develop and support only one version

� Client only needs a web browser with Java support

Java: Socket Class (1)

� Used for TCP sockets

� Constructors
� Socket(InetAddress remoteAddr, int remotePort)

� Socket(String remoteHost, int remote Port)

2/23/2013 Internet Programming 15

� Socket(String remoteHost, int remote Port)

� Socket(InetAddress remoteAddr, int remotePort, InetAddress localAddr,
intlocalPort)

� Socket(String remoteHost, int remotePort, InetAddress localAddr, int localPort)

� Operators
� void close()

� void shutdownInput() – shutdown for receiving

� void shutdownOutput() – shutdown for sending

Java: Socket Class (2)

� Accessors/Mutators

� int getPort()

� InputStream getutStream() // Returns a stream for reading bytes from the

2/23/2013 Internet Programming 16

� InputStream getutStream() // Returns a stream for reading bytes from the

socket

� OutputStream getOutputStream() // Returns a stream for writing bytes to

the socket

� getKeepAlive()

� void setKeepAlive(boolean on)

� InetAddress getLocalAddress()

� int getLocalPort()

Java: Socket Class (3)
� Creating a connected socket

� Sending data via a socket

Socket socket = new Socket(server, servPort);

OutputStream out = socket.getOutputStream();

2/23/2013 Internet Programming 17

� Receiving data via a socket

� Closing a socket

OutputStream out = socket.getOutputStream();
out.write(byteBuffer);

InputStream in = socket.getInputStream();

bytesRcvd = in.read(byteBuffer, totalBytesRcvd, byteBuffer.length - totalBytesRcvd)

socket.close();

Java: ServerSocket Class
(1)

� Used for (server) TCP sockets

� Constructors
� ServerSocket(int localPort)

ServerSocket(int localPort, int queueLimit)

2/23/2013 Internet Programming 18

� ServerSocket(int localPort, int queueLimit)

� ServerSocket(int localPort, int queueLimit,

InetAddress localAddr)
� Can set the local IP address to limit to a particular interface

� Operators
� Socket accept()

� void close()

Java: ServerSocket Class
(2)
� Accessors/Mutators

� InetAddress getInetAddress()

� int getLocalPort()

int getSoTimeout()

2/23/2013 Internet Programming 19

� int getSoTimeout()

� void setSoTimeout(int timeout)

� Creating a socket listening at servPort

� Accepting a connection

ServerSocket servSock = new
ServerSocket(servPort);

Socket clntSock = servSock.accept();

Java TCP Socket Example

A Server (web server) at www.bridgew.edu

- listens to port 80 for Socket Client Connection Requests

- Establish InputStream for sending data to client
- Establish OutputStream for receiving data from client

2/23/2013 Internet Programming 20

- Establish OutputStream for receiving data from client

80

Port

Server
www.bridgew.eduClientA

www.stonehill.edu

Client B

www.umass.edu socket

TCP connection example: (Server)
import java.io.*;

import java.net.ServerSocket;

import java.net.Socket;

public class myserver {

public static void main(String [] s) {

try {

ServerSocket s = new ServerSocket(2003);

2/23/2013 Internet Programming 21

While (true) {

// wait for a connection request from client

Socket clientConn = s.accept();

InputStream in = clientConn.getInputStream();

OutputStream out = clientConn.getOutputStream();

// communicate with client

// ..

clientConn.close(); // close client connection

}

}catch (Exception e){//do something about the exception} }

}

}

TCP connection example: (Client)
import java.io.*;

import java.net.ServerSocket;

import java.net.Socket;

public class myclient {

public static void main(String [] s) {

try {

InetAddress addr = InetAddress.getByName(

“www.bridgew.edu”);

2/23/2013 Internet Programming 22

“www.bridgew.edu”);

Socket s = new Socket(addr, 2003);

InputStream in = s.getInputStream();

OutputStream out = s.getOutputStream();

// communicate with remote process

// e.g. GET document /sattar/index.html

s.close();

} catch(Exception e) {

System.out.println(“Exception”);

// do something about the Exception

}

}

}

TCP examples

Demo

2/23/2013 Internet Programming 23

UDP (User Datagram Protocol)

� provides a connectionless service for the transfer
of individual datagrams(packets)

� minimizes overhead since no network connection
is established prior to a datagram being sent

2/23/2013 Internet Programming 24

is established prior to a datagram being sent

� useful when application calls for small (~64
kbytes) independent messages

� significant differences

� No ServerSocket

� Explicit buffering

DatagramSocket

� used to both send and receive
DatagramPackets

� as with TCP sockets, DatagramSockets must
be bound to a particular port number

2/23/2013 Internet Programming 25

be bound to a particular port number

� Constructors

� public static DatagramSocket()

� public DatagramSocket(int port)

� public DatagramSocket(int port,

InetAddress iaddr)

DatagramSocket methods

� void send(DatagramPacket p)
� sends packet from this socket

� throws IOException if i/o error occurs

void receive(DatagramPacket p)

2/23/2013 Internet Programming 26

� void receive(DatagramPacket p)
� receives packet from this socket

� throws IOException if i/o error occurs

� get and set methods for SoTimeout
� used get/set socket timeout for receive
operation

DatagramPacket

� used to implement a connectionless packet delivery
service

� Each packet is routed from one machine to another
based solely on information contained within that

2/23/2013 Internet Programming 27

based solely on information contained within that
packet

� Multiple packets sent from one machine to another
might be routed differently, and might arrive in any
order

DatagramPacket
� Constructors

� DatagramPacket(byte[] buf, int length)

� Constructs a DatagramPacket for receiving
packets of length length

2/23/2013 Internet Programming 28

packets of length length

� DatagramPacket(byte[] buf, int length,

InetAddress address, int port)

� Constructs a datagram packet for sending
packets of length length to the specified port
number on the specified host

DatagramPacket methods
� InetAddress getAddress()

� returns IP address of packet source (receive packet) or
destination (send packet)

� int getPort()
returns port of packet source (receive packet) or

2/23/2013 Internet Programming 29

� returns port of packet source (receive packet) or
destination (send packet)

� byte[] get data()
� returns packet data

� int getLength()
� returns length of data to be sent or data received

� corresponding set methods

EX: Printing local host information

InetAddress address = InetAddress.getLocalHost();

System.out.println("Local Host:");

2/23/2013 Internet Programming 30

System.out.println("Local Host:");

System.out.println("\t" + address.getHostName());

System.out.println("\t" + address.getHostAddress());

Working with UDP(1)

� Receiving data sent by a remote machine

datagramPacket

IP Address

UDP Client

2/23/2013 Internet Programming 31

Internet packets Datagram
Socket

Translates
packet

into DatagramPacket

Port

Packet data

Byte[]={ …
}

ByteArrayInputStream

OR

InputStream

InputStreamReader

Working with UDP(2)
� Sending data to a remote machine

UDP
UDP Socket

UDP Server

2/23/2013 Internet Programming 32

UDP
Application

Creates a
Datagram
Packet

UDP port

bound to

packet Internet

DatagramSocket socket = new DatagramSocket(2003); //datagram socket bound to port 2003

DatagramPacket packet = new DatagramPacket(new byte[256], 256);

packet.setAddress(InetAddress.getByName(some remote UDP Client);

//write data to packet buffer

Socket.send(packet); //packet out to Internet

Working with UDP(3)

� Receiving UDP Packets
� create DatagramSocket

DatagramSocket socket = new DatagramSocket(port);

� construct reception packet

2/23/2013 Internet Programming 33

� construct reception packet
byte buffer[] = new byte[256];

DatagramPacket packet = new DatagramPacket(buffer,

buffer.length);

� wait for packet
socket.receive(packet);

� close socket when done
socket.close();

Working with UDP(4)

� Sending UDP packets
� create DatagramSocket

DatagramSocket socket = new DatagramSocket(2003);

� construct transmission packet

2/23/2013 Internet Programming 34

� construct transmission packet
DatagramPacket packet =

new DatagramPacket(buffer,buffer.length);

packet.setAddress(InetAddress.getByName(somehost));

� send packet
socket.send(packet);

� close socket when done
socket.close();

UDP examples

Demo

2/23/2013 Internet Programming 35

URL class(1)
Let Java handle the details of the communications with a web server.

creating URLs

� URL(String spec)
URL CS399 = new URL(“http://webhost.bridgew.edu/sattar/”);

URL(URL context, String spec);

2/23/2013 Internet Programming 36

� URL(URL context, String spec);
URL CS399Lectures = new URL(CS399, “lecture.html”);

� URL(String protocol, String host, String file);

URL CS399 = new URL(“http”,“webhost.bridgew.edu”, “/sattar/index.html”);

� URL(String protocol, String host, int port,

String file);

URL CS399 = new URL(“http”,“webhost.bridgew.edu”, 80 , “/sattar/index.html”);

All URL constructors throw MalformedURLException

URL class(2)

The URL class provides several methods
that let you query URL objects

� String getProtocol() - returns protocol

2/23/2013 Internet Programming 37

� String getProtocol() - returns protocol

� String getHost() - returns host

� int getPort() - returns port

� String getFile() - returns filename

� String getRef() - returns anchor

Reading from a URL

� You can call URL's openStream()

method to get a stream from which you
can read the contents of the URL

2/23/2013 Internet Programming 38

can read the contents of the URL

� The openStream() method returns a
java.io.InputStream object, so reading
from a URL is as easy as reading from

an input stream

Connecting to a URL

� You can call URL's openConnection()

method to open a TCP connection to the
URL

2/23/2013 Internet Programming 39

URL

� The openConnection() method returns a
URLConnection object, which provides the

ability to read from and write to a URL

URLConnection class

� abstract superclass of all classes that
represent a TCP connection between an
application and a URL

Instances of this class can be used both

2/23/2013 Internet Programming 40

� Instances of this class can be used both
to read from and to write to the
resource referenced by the URL

� subclasses must implement connect()
method

Building a simple Web server

� Handles one HTTP request

� Accepts the request

� Parses header

� Obtains requested file from server’s file system

2/23/2013 Internet Programming 41

� Obtains requested file from server’s file system

� Creates HTTP response message: (header lines + file)

� Sends response to client

