Reason, Rhetoric, and Risk

Hooking Students with Numbers in an Election Year

Matt Salomone

Associate Professor, Mathematics
Director, Math Services
Coordinator, Quantity Across the Curriculum
Bridgewater State University
Bridgewater, MA 02325
January 14, 2016

Powerball and the Internet's Armchair Mathematicians

\square

THERES 300 WILIONAMERIOANS.
aNa!
1.118
WECOULD GIVE EVERYAMERIGAM S4.83 MILLIOHAND END POVERTY.

Why would so many "fall for" this?

Why would so many "fall for" this?

Authoritative-sounding, large numbers + motivation to believe conclusion = Perfect trap for the unwary!

Quantitative Reasoning = "Liberal Application" of Mathematical Skill

Quantitative Reasoning
Concrete, authentic
Specifying, deductive
Relies upon context
Socially constructed
Political
Often ad-hoc
Ill-defined problems
Multidisciplinary
Emphasizes problem description
Many opportunities to practice
Open-ended, unpredictable
is not the same as Mathematics
Taylor 2002

Quantitative Reasoning = "Liberal Application" of Mathematical Skill

Quantitative Reasoning
Concrete, authentic
Specifying, deductive
Relies upon context
Socially constructed
Political
Often ad-hoc
Ill-defined problems
Multidisciplinary
Emphasizes problem description
Many opportunities to practice
Open-ended, unpredictable
is not the same as Mathematics
Taylor 2002

Quantitative Reasoning = "Liberal Application" of Mathematical Skill

Quantitative Reasoning
is not the same as
Mathematics
Taylor 2002

Concrete, authentic
Specifying, deductive
Relies upon context
Socially constructed
Political
Often ad-hoc
III-defined problems
Multidisciplinary
Emphasizes problem description
Many opportunities to practice
Open-ended, unpredictable

Abstract
Generalizing, inductive
Little context
Objective
Apolitical
Methodical, algorithmic
Exacting
Heavily disciplinary
Emphasizes problem solution
Difficult to locate / practice
Closed-ended problems

Math can be (ineffectively) memorized, but is no guarantee of numeracy.

One Reason for Impaired Numeracy: Cognitive Difficulty with Risk/Probability

A diagnostic puzzle

A group of 24 practicing physicians were presented with a puzzle.
The probability that a woman has breast cancer is 0.8 percent.
Mammograms detect the presence of breast cancer 90% of the time.
However, 7% of cancer-free women will still test positive on a mammogram.
What do you tell a patient who tests positive about the likelihood she has breast cancer?
You say...

Doctors said...
(A) Less than 10\%
(B) More than 10% but less than 80%
(C) More than 80%

One Reason for Impaired Numeracy: Cognitive Difficulty with Risk/Probability

A diagnostic puzzle

A group of 24 practicing physicians were presented with a puzzle.
The probability that a woman has breast cancer is 0.8 percent.
Mammograms detect the presence of breast cancer 90% of the time.
However, 7% of cancer-free women will still test positive on a mammogram.
What do you tell a patient who tests positive about the likelihood she has breast cancer?

You say...
Doctors said...
(A) Less than 10\%
(B) More than 10% but less than 80%
(C) More than 80%

8 (33\%)
8 (33\%)
8 (33\%)

One Reason for Impaired Numeracy: Cognitive Difficulty with Risk/Probability

A diagnostic puzzle

The probability that a woman has breast cancer is 0.8 percent. Mammograms detect the presence of breast cancer 90% of the time. However, 7% of cancer-free women will still test positive on a mammogram.
What do you tell a patient who tests positive about the likelihood she has breast cancer?
(A) Less than 10%
(B) More than 10% but less than 80%
(C) More than 80%

All patients (100\%)

One Reason for Impaired Numeracy: Cognitive Difficulty with Risk/Probability

A diagnostic puzzle
The probability that a woman has breast cancer is 0.8 percent. Mammograms detect the presence of breast cancer 90% of the time. However, 7% of cancer-free women will still test positive on a mammogram.
What do you tell a patient who tests positive about the likelihood she has breast cancer?
(A) Less than 10%
(B) More than 10% but less than 80%
(C) More than 80%

All patients (100\%)

One Reason for Impaired Numeracy: Cognitive Difficulty with Risk/Probability

A diagnostic puzzle
The probability that a woman has breast cancer is 0.8 percent. Mammograms detect the presence of breast cancer 90% of the time. However, 7% of cancer-free women will still test positive on a mammogram.
What do you tell a patient who tests positive about the likelihood she has breast cancer?
(A) Less than 10%
(B) More than 10% but less than 80%
(C) More than 80%

All patients (100\%)

Breast
Cancer

One Reason for Impaired Numeracy: Cognitive Difficulty with Risk/Probability

A diagnostic puzzle
The probability that a woman has breast cancer is 0.8 percent. Mammograms detect the presence of breast cancer 90% of the time. However, 7% of cancer-free women will still test positive on a mammogram.
What do you tell a patient who tests positive about the likelihood she has breast cancer?
(A) Less than 10%
(B) More than 10% but less than 80%
(C) More than 80%

All patients (100\%)

Breast
Cancer

One Reason for Impaired Numeracy: Cognitive Difficulty with Risk/Probability

A diagnostic puzzle
The probability that a woman has breast cancer is 0.8 percent. Mammograms detect the presence of breast cancer 90% of the time. However, 7% of cancer-free women will still test positive on a mammogram.
What do you tell a patient who tests positive about the likelihood she has breast cancer?
(A) Less than 10%
(B) More than 10% but less than 80%
(C) More than 80%

All patients (1000)

Breast
Cancer

One Reason for Impaired Numeracy: Cognitive Difficulty with Risk/Probability

A diagnostic puzzle
The probability that a woman has breast cancer is 0.8 percent. Mammograms detect the presence of breast cancer 90% of the time. However, 7% of cancer-free women will still test positive on a mammogram.
What do you tell a patient who tests positive about the likelihood she has breast cancer?
(A) Less than 10%
(B) More than 10% but less than 80%
(C) More than 80%

All patients (1000)

One Reason for Impaired Numeracy: Cognitive Difficulty with Risk/Probability

A diagnostic puzzle
The probability that a woman has breast cancer is 0.8 percent. Mammograms detect the presence of breast cancer 90% of the time. However, 7% of cancer-free women will still test positive on a mammogram.
What do you tell a patient who tests positive about the likelihood she has breast cancer?
(A) Less than 10%
(B) More than 10% but less than 80%
(C) More than 80%

Cognitive Difficulty with Risk/Probability: A Closer Look

A diagnostic puzzle
The probability that a woman has breast cancer is 0.8 percent. Mammograms detect the presence of breast cancer 90% of the time. However, 7% of cancer-free women will still test positive on a mammogram.
What do you tell a patient who tests positive about the likelihood she has breast cancer?
(A) Less than 10%
(B) More than 10% but less than 80%
(C) More than 80%

Possible stumbling blocks:

Cognitive Difficulty with Risk/Probability: A Closer Look

A diagnostic puzzle
The probability that a woman has breast cancer is 0.8 percent. Mammograms detect the presence of breast cancer 90% of the time. However, 7% of cancer-free women will still test positive on a mammogram.
What do you tell a patient who tests positive about the likelihood she has breast cancer?
(A) Less than 10%
(B) More than 10% but less than 80%
(C) More than 80%

Possible stumbling blocks:

(1) Base-rate neglect: ignores low incidence of condition overall

Cognitive Difficulty with Risk/Probability: A Closer Look

A diagnostic puzzle

The probability that a woman has breast cancer is 0.8 percent. Mammograms detect the presence of breast cancer 90% of the time. However, 7% of cancer-free women will still test positive on a mammogram.
What do you tell a patient who tests positive about the likelihood she has breast cancer?
(A) Less than 10\%
(B) More than 10% but less than 80%
(C) More than 80%

Possible stumbling blocks:

(1) Base-rate neglect: ignores low incidence of condition overall
(2) Logical conditionality: 90% of cancer tests positive $\neq 90 \%$ of positive tests are cancer

Cognitive Difficulty with Risk/Probability: A Closer Look

A diagnostic puzzle

The probability that a woman has breast cancer is 0.8 percent. Mammograms detect the presence of breast cancer 90% of the time. However, 7% of cancer-free women will still test positive on a mammogram.
What do you tell a patient who tests positive about the likelihood she has breast cancer?
(A) Less than 10%
(B) More than 10% but less than 80%
(C) More than 80%

Possible stumbling blocks:

(1) Base-rate neglect: ignores low incidence of condition overall
(2) Logical conditionality: 90% of cancer tests positive $\neq 90 \%$ of positive tests are cancer
(3) Linguistic problem: colloquial use of the word "positive"

Cognitive Difficulty with Risk/Probability: A Closer Look

A diagnostic puzzle

The probability that a woman has breast cancer is 0.8 percent. Mammograms detect the presence of breast cancer 90% of the time. However, 7% of cancer-free women will still test positive on a mammogram.
What do you tell a patient who tests positive about the likelihood she has breast cancer?
(A) Less than 10%
(B) More than 10% but less than 80%
(C) More than 80%

Possible stumbling blocks:

(1) Base-rate neglect: ignores low incidence of condition overall
(2) Logical conditionality: 90% of cancer tests positive $\neq 90 \%$ of positive tests are cancer
(3) Linguistic problem: colloquial use of the word "positive"
(4) Emotional valence: cancer is frightening; fear activates heuristic thinking

Risk is Political - Data Can Keep It Honest

Rank the following causes of death from most risky (5) to least risky (1).

Cause of death Votes Your Rank Actual Rank

Car accident
Cancer
Terrorist attack
Lightning strike
Gun homicide
There are many reasons why we're bad at evaluating risks - but data can temper our innate emotional response.

Risk is Political - Data Can Keep It Honest

\section*{Rank the following causes of death from most risky (5) to least risky (1).
 | Cause of death | Votes | Your Rank |
| :--- | :---: | :---: |
| Actual Rank | | |
| Car accident | | 4 |
| Cancer | | 5 |
| Terrorist attack | | 1 |
| Lightning strike | | 2 |
| Gun homicide | | 3 |}

There are many reasons why we're bad at evaluating risks - but data can temper our innate emotional response.

Least risky of these causes tends to draw the most political rhetoric! (Why?)

Quantitative Reasoning is Political

Who said it? Match the quote to the candidate

2016 Primary Debates

Free college, a single payer system for health-and it's been estimated we're looking at $\$ 18$ to $\$ 20$ trillion, about 40 percent in the federal budget. (Link)

I think the thing about the flat tax, I know it very well. What I don't like is that if you make $\$ 200$ million a year, you pay ten percent, you're paying very little relatively to somebody that's making \$50,000 a year, and has to hire H\&R Block to do the - because it's so complicated. (Link)

Republicans win when there is a low voter turnout, and that is what happened last November. Sixty-three percent of the American people didn't vote. Eighty percent of young people didn't vote. (Link)

The math is, 5% of a million is a lot more than 5% of a thousand. So yeah, someone who makes more money, numerically, it's gonna be higher. But the greatest gains, percentage-wise, for people, are gonna be at the lower end of our plan. (Link)

From Numbers to Speech: How'd You Do It?

\square

Takeaways

What did you find most interesting/surprising?
What's one way to use risk and rhetoric to hook students in your course?

