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1  |  INTRODUC TION

Conserving biodiversity in the age of Earth's sixth mass extinction 
(Ceballos	et	al.,	2015)	will	require	understanding	the	basic	properties	

of plant and animal communities, including the effects of biotic 
and abiotic factors on their distribution and abundance, as well as 
evaluating	the	recent	impacts	of	human	development.	Species	dis-
tributions and patterns of abundance for both plants and animals 
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Abstract
Aim: The assembly of species into communities and ecoregions is the result of in-
teracting factors that affect plant and animal distribution and abundance at biogeo-
graphic scales. Here, we empirically derive ecoregions for mammals to test whether 
human disturbance has become more important than climate and habitat resources in 
structuring communities.
Location: Conterminous	United	States.
Time Period: 2010–2021.
Major Taxa Studied: Twenty- five species of mammals.
Methods: We	analysed	data	from	25	mammal	species	recorded	by	camera	traps	at	
6645	locations	across	the	conterminous	United	States	in	a	joint	modelling	framework	
to	estimate	relative	abundance	of	each	species.	We	then	used	a	clustering	analysis	to	
describe	8	broad	and	16	narrow	mammal	communities.
Results: Climate was the most important predictor of mammal abundance overall, 
while human population density and agriculture were less important, with mixed ef-
fects	across	species.	Seed	production	by	forests	also	predicted	mammal	abundance,	
especially hard- mast tree species. The mammal community maps are similar to those 
of plants, with an east–west split driven by different dominant species of deer and 
squirrels.	 Communities	 vary	 along	 gradients	 of	 temperature	 in	 the	 east	 and	 pre-
cipitation	in	the	west.	Most	fine-	scale	mammal	community	boundaries	aligned	with	
established plant ecoregions and were distinguished by the presence of regional spe-
cialists	or	shifts	in	relative	abundance	of	widespread	species.	Maps	of	potential	eco-
system services provided by these communities suggest high herbivory in the Rocky 
Mountains	and	eastern	forests,	high	invertebrate	predation	in	the	subtropical	south	
and greater predation pressure on large vertebrates in the west.
Main Conclusions: Our results highlight the importance of climate to modern mam-
mals and suggest that climate change will have strong impacts on these communities. 
Our new empirical approach to recognizing ecoregions has potential to be applied to 
expanded communities of mammals or other taxa.

K E Y W O R D S
climate, macroecology, mammal communities, masting, species distribution models
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reflect many processes that operate at biogeographic scales, in-
cluding climate, geomorphology, habitat complexity, palaeogeog-
raphy	 and	 human	 impacts	 (Myers	 et	 al.,	 2000).	 However,	 widely	
used	 biogeographic	 classes,	 including	 ecoregions	 (Olson,	 2001),	
forest	types	(Ruefenacht	et	al.,	2008)	and	community	classifications	
(Jennings	et	 al.,	2009),	 are	 typically	defined	by	 the	distribution	of	
plants.	Accordingly,	much	of	our	understanding	of	 large-	scale	bio-
geographic	drivers	focus	on	how	climate,	habitat	variables	(including	
soils	and	drainage)	and	human	influence	(e.g.,	forest	harvest,	agricul-
tural	practices)	affect	 these	plant	ecoregions	 (Turner	et	al.,	2001).	
Similar	 knowledge	 of	 vertebrates	 has	 lagged	 because	 of	 the	 diffi-
culty measuring the abundances of multiple animal species at rep-
resentative scales.

Plant communities offer many of the critical resources needed 
by mammals and are likely a key determinant of their distribution 
and abundance. If vertebrate biogeography tracks plant forma-
tions, then animals either respond to the same influences or are 
driven by bottom- up forces. On the other hand, animals are more 
than the food they eat and their dynamic behaviours such as move-
ment and thermoregulation could result in different biogeographic 
patterns than plants, especially in response to human disturbance 
and	resource	supplementation.	In	North	America,	ecoregions	are	
defined along climatic and topographic gradients reflecting the 
vegetative communities in deserts, plains, highlands, tundra and 
seven	forest	types	(Omernik	&	Griffith,	2014).	Previous	tests	have	
found mixed results when using these ecoregions to explain bird 
and mammal distributions by predicting areas of high species turn-
over from animal range maps, with no support when considering 
only	North	American	species	(McDonald	et	al.,	2005),	but	stronger	
support	 at	 the	 global	 scale	 (Smith	 et	 al.,	 2018).	 However,	 these	
two studies were conducted by matching high- level biogeographic 
patterns of diversity and both recognized the importance of ad-
ditional research to identify the specific mechanisms underlying 
observed ecoregion patterns.

A	historical	perspective	on	the	most	 important	ecological	driv-
ers for mammals indicates that prehistoric biogeography in North 
America	was	strongly	shaped	by	climate	and	then	later	by	coloniz-
ing	humans	(Alroy,	2001).	Human	societies	continue	to	exert	 large	
impacts on modern mammal populations, extirpating predators 
from large areas and driving substantial community changes along 
urban- wild gradients, as sensitive species are restricted to wildlands, 
while	anthrophilic	species	thrive	near	people	(Parsons	et	al.,	2018).	
However, the relative importance of human factors in comparison to 
climate in modern populations has not been addressed at the large 
scale	needed	to	encompass	meaningful	climatic	variation.	Mammals	
also depend on plant communities for cover and food. Green veg-
etation	forms	the	base	of	the	food	web,	along	with	tree	mast	 (i.e.,	
seeds,	fruits,	nuts)	crops	that	feed	diverse	guilds	of	granivores	and	
frugivores	(Martin	et	al.,	1951).	If	food	and	climate	drive	the	patterns	
of distribution and abundance of mammals, we would expect plant 
ecoregions to structure mammal communities. However, if human 
factors are now the most important influence driving these patterns, 
we would predict a homogenization of mammal communities across 

areas	with	similar	 levels	of	human	development	(McKinney,	2006).	
Understanding	 the	 relative	 importance	 of	 these	 factors	 is	 critical	
for conserving biodiversity in the face of climate change and human 
population growth.

In this study, we examine a large compilation of mammal abun-
dance estimates at a continental scale that represent the full range 
of	climatic	and	human	disturbance	levels	of	the	continental	United	
States:	hot	to	cold,	wet	to	dry	and	urban	to	wild	(Figure S1).	Together,	
these	 data	 allow	 us	 to	 quantify	 the	 biogeography	 of	mammals	 by	
mapping the ecological communities of 25 of the most common, 
larger	terrestrial	mammals	of	the	conterminous	United	States,	com-
pare them to regions based on plants and identify potential mecha-
nisms underlying ecoregion boundaries by comparing the extent to 
which these communities are shaped by climate, habitat and human 
disturbance. The relative importance of these factors on mammal 
species today has important implications for managing biodiversity 
on a warming, drying continent with a growing human population and 
footprint.	Additionally,	these	larger	mammals	play	important	ecolog-
ical	roles	that	can	cascade	through	ecosystems	(Terborgh,	2010)	and	
we use our maps to predict the relative strength of their resulting 
ecological	impacts	across	the	United	States.

2  |  MATERIAL S AND METHODS

We	 used	 models	 of	 relative	 abundance	 from	 collaboratively	 col-
lected camera trap data from 424 array sites using a standardized 
sampling design to predict mammal communities, which we then 
grouped	 based	 on	 similarity	 and	 mapped	 across	 the	 country.	 An	
overview of our approach is provided in Figure 1 and the steps are 
also identified in sub- headings.

2.1  |  Camera trap data (1)

We	collected	camera	trap	data	from	across	the	United	States	by	
combining	data	from	Snapshot	USA	(Cove	et	al.,	2021; Kays, Cove, 
et al., 2022),	Carolina	Critters	(Lasky	et	al.,	2021)	and	other	data	
sets	from	(Figure S1).	To	reduce	the	problem	of	uneven	sampling	
we	thinned	the	data	from	North	Carolina	and	Virginia	to	be	similar	
to the camera densities from other regions by randomly select-
ing	400	locations	within	each	3-	degree	grid	cell.	All	cameras	were	
set at ~0.5 m	height	and	without	bait.	A	variety	of	camera	models	
were	 used,	 but	 all	 had	 fast	 (<0.5 s)	 trigger	 times	 and	 other	 fea-
tures	 that	made	 their	 data	 comparable.	 Some	 cameras	were	 set	
on	hiking	trails	or	dirt	roads	and	this	was	noted.	We	initially	aimed	
to include data from Canada but found much of it was collected 
with	cameras	set	higher	on	trees	(to	account	for	snowfall	of	cam-
eras	 left	 in	 remote	 areas	 for	 long	 time	 periods),	 which	 failed	 to	
reliably detect smaller species. Cameras were set to take multiple 
pictures for each trigger event and immediately retrigger and we 
combined	these	 into	one	sequence	with	a	60 s	 independence	 in-
terval,	which	ensures	temporal	independence	of	detections	(Kays	
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&	Parsons,	2014).	We	used	the	number	of	independent	detections	
at a camera site as a measure of relative abundance for a species, 
standardizing for the amount of time a camera was in place, essen-
tially	comparing	detection	rate	across	sites	for	a	species.	We	then	
adjusted these measurements to account for differences in de-
tection	area	for	species	of	different	sizes	(Rowcliffe	et	al.,	2011).	
While	local	animal	movement	rates	can	also	affect	detection	rate	
(Broadley	et	al.,	2019),	if	cameras	are	set	in	standardized	way	it	can	
still provide an index of relative abundance that can be compared 
across	sites	and	species	(Hofmeester	et	al.,	2019)	that	is	correlated	
with	absolute	density	(Parsons	et	al.,	2017).	It	is	likely	that	the	re-
lationship between detection rate and true abundance is different 
across species, but our models compare the relative abundance 
of one species at a time, avoiding those complications. In total, 
we	collected	data	 from	sites	monitored	by	6447	cameras	across	
424	 arrays	 (i.e.,	 study	 sites)	 representing	688.4	 camera-	years	 of	
survey effort.

We	 initially	 focused	 on	 26	 terrestrial,	 broad-	ranging	 mam-
mal species that are large enough to be well surveyed by camera 
traps, can be indisputably identified from images and which were 
well covered in our data with a minimum size cut- off based on 

performance	of	preliminary	model	runs	(Table S1).	The	smallest	
sample size was for grey wolves with 109 detections by 55 cam-
eras	across	16	study	areas.	We	excluded	species	that	were	not	
sampled	well	because	they	are	primarily	aquatic	or	because	they	
are difficult or impossible to tell apart on camera trap pictures 
(i.e.,	 Sylvilagus, Neotoma, Glaucomys, Kays, Lasky, et al., 2022).	
Our sampling is thus somewhat biased towards the larger, more 
common, more widespread species, although it does include 
small species like chipmunks and rare species like wolves and 
cougar.

2.2  |  Covariates (2)

We	 selected	 environmental	 covariates	 to	 describe	 the	 physical,	
vegetative, climatic and human aspects of habitats sampled with 
camera	traps	(Table 1).	We	zero-	centred	and	standardized	all	co-
variates.	We	 initially	 included	a	 larger	number	of	 covariates	 and	
removed	 those	 that	were	 correlated	 (r ≥ 0.6;	 except	 annual	 tem-
perature	and	rainfall	which	were	correlated	at	0.63).	We	used	the	
MASTIF	model	 to	estimate	 the	production	of	 seeds	and	 fruit	by	

F I G U R E  1 An	overview	of	our	
approach for mapping mammal 
communities	in	North	America.	(1)	We	
acquired	relative	abundance	data	for	
25	mammal	species	across	6645	sites	
monitored	by	camera	traps	(2)	annotated	
them with environmental covariates 
and	(3)	used	GJAM	to	predict	their	
potentially	suitable	habitat.	We	then	(4)	
used range maps to trim out areas not 
used	and	(5)	annotated	a	grid	of	points	
with the predicted relative abundance 
for	all	species.	We	used	these	mammal	
community	data	in	a	(6)	hierarchical	
clustering	algorithm	to	create	8	broad	
and	16	narrow	clusters,	which	(7)	could	
then	be	mapped,	(8)	characterized	by	
their typical mammal abundances and 
(9)	combined	with	diet	and	body	size	
information to extrapolate ecological 
impacts.
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trees	at	each	camera	location	(Clark	et	al.,	2019).	Seeds	were	clas-
sified into four categories: hard mast, big nut, conifer, soft mast 
(Table S2).	The	MASTIF	data	are	estimates	of	typical	mast	produc-
tion	for	a	site	given	the	forest	composition	(species,	size,	age),	but	
do	not	account	for	year-	to-	year	variation.	Because	MASTIF	sites	
(170,000	forest	inventory	plots)	were	not	at	the	exact	same	loca-
tions	 as	 our	 cameras,	we	 took	 an	 average	 of	 the	 three	MASTIF	
sites closest to the camera trap that were in the same forest type 
(Ruefenacht	 et	 al.,	 2008).	 Because	 these	 fruits	 only	 come	 from	
forested land, we then multiplied that value by the total % for-
est	cover	within	1 km2	(Jung	et	al.,	2020)	to	get	a	measure	of	the	
amount of mast available to mammals around a camera site. This 
process resulted in four measures of forest cover weighted by the 
amount	of	mast	(hard,	soft,	big	nut,	or	conifer)	they	were	likely	to	
produce.

2.3  |  Modelling community abundance (3–5)

We	used	a	generalized	joint	attribute	model	GJAM	(Clark	et	al.,	2017)	
to	predict	the	relative	abundance	of	26	mammal	species	at	the	commu-
nity scale based on the covariates described above. This multivariate 
approach extends single- species distribution models by considering 
relationships among the community members through a correlation 
matrix from the residuals. The model accepts response variables that 
may	be	measured	in	different	ways	(i.e.,	continuous	or	discrete),	rep-
resenting all observations as continuous through the latent vector �i,  

which,	 in	 this	 case,	 represents	counts	per	effort	 (detection	 rate)	 for	
each species up to S at camera trap i, where �i is given by:

where �i is a vector of means of length S and � is an S × S covariance 
matrix	which	quantifies	the	residual	correlation	between	species	that	
is not taken up by the mean structure of the model. These residual cor-
relations reflect species co- occurrence patterns not explained by envi-
ronmental predictors which could be due to model mis- specifications, 
missing covariates, or species interactions.

The mean structure �i is modelled as a function of environmental 
predictors following:

where � is a Q × S matrix of slope coefficients associated with each spe-
cies and each predictor up to length Q in design matrix Xi.

The output of the model predicts the relative abundance of each 
species	at	the	observation	(camera	trap)	scale	and	includes	a	species-	
by- species covariance matrix with measures of the sensitivity of 
each	species	to	each	covariate.	We	ran	our	model	within	a	Bayesian	
framework	using	non-	informative	priors	via	the	gjam	package	(v	2.6.2,	
Clark	&	Taylor-	Rodriquez,	2021)	 in	program	R	 (R	Core	Team,	2023),	
achieving convergence after 40,000 iterations with a burn- in of 
10,000 iterations. The relative importance of each covariate was de-
termined through a sensitivity analysis that integrates the change in 

(1)�i ∼ MVN
(

�i ,�
)

(2)�i = ��
Xi

TA B L E  1 Covariates	used	in	GJAM	models.

Type Name Source Description Scale Year Ref.

Human Human 
population size

GPW	V4 Number of people 1 km2 2020 Center for 
International Earth 
Science	Information	
Network	(2018)

Climate Temp MERRAclim Annual	Mean	Temperature	
(degree	Celsius	multiplied	
by	10)

2.5 arcminutes 2000s decade Vega	et	al.	(2017)

Climate Precipitation MERRAclim Annual	Precipitation 2.5 arcminutes 2000s decade Vega	et	al.	(2017)

Climate Aridity	index ENVIREM Degree of water deficit 
below water need

30 arc seconds Current Title and Bemmels 
(2018)

Terrain Terrain Terrain 
Ruggedness Index

Difference between central 
pixel and surrounding cells

1 km Current Amatulli	et	al.	(2018)

Habitat Shrub IUCN	Habitats % of area that was shrub 1 km2 2015 Jung	et	al.	(2020)

Habitat AgCombo IUCN	Habitats % of area that was pasture 
or arable

1 km2 2015 Jung	et	al.	(2020)

Habitat Grass01 IUCN	Habitats Scored	1	if	%	of	area	in	grass	
was >30%

1 km2 2015 Jung	et	al.	(2020)

Habitat Hard	Mast,	
Big	Nut	Mast,	
Conifer	Mast,	
Fruit tree mast

MASTIF Estimated production of 
each	type	of	mast	(kg/ha)	
weighted by the amount of 
forest	in	1 km2

1 km2 2015 Clark	et	al.	(2019)	
and	Jung	
et	al.	(2020)

Note:	Acronyms	are	MASTIF = mass	inference	and	prediction,	GPW	V4 = gridded	population	of	the	world,	version	4,	Merraclim = modern-	era	
retrospective	analysis	for	research	and	applications	climate,	ENVIREM = environmental	rasters	for	ecological	modelling,	IUCN = international	union	
for conservation of nature.
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6 of 16  |     KAYS et al.

the	model	performance	to	removal	of	each	covariate	 (Brynjarsdóttir	
&	Gelfand,	2014).

As	a	measure	of	relative	abundance	for	each	species,	we	used	the	
number of detections from a camera trap and the amount of time a 
camera	was	 in	 place	 as	 a	measure	of	 effort	 (i.e.,	 detection	 rate).	 To	
make this abundance measure more comparable across species, we 
accounted for the fact that larger species are detected by camera traps 
over larger areas by dividing the abundance by the mass- adjusted area 
surveyed	by	each	camera	following	(Rowcliffe	et	al.,	2011):

To evaluate the utility of mast- weighted measures of forest 
cover, we ran two versions of the model, one with % forest cover 
within	1 km	unweighted	by	mast	and	one	with	%	forest	cover	within	
1 km	weighted	 by	 the	 four	mast	 types,	 respectively.	 Both	models	
included	all	other	covariates.	We	used	DIC	values	 to	compare	 the	
performance of these two models.

We	used	a	regular	10 km	grid	of	points	across	the	country	to	pre-
dict relative abundance of each species to unsampled areas based 
on	covariate	values	at	each	grid	point.	We	ran	our	prediction	using	
the	predictGJAM	routine	in	the	GJAM	package	which	allows	species-	
specific prediction while accounting for community- level vari-
ance–covariance	 relationships	 (i.e.,	multivariate	prediction;	Clark	&	
Taylor-	Rodriquez,	2021).	We	used	the	resulting	predictions	to	make	
habitat suitability maps for each species across the country. The pre-
diction	maps	 from	 GJAM	 show	where	 potentially	 suitable	 habitat	
occurs, but the species may not actually live in all these areas due 
to dispersal limitations or other factors not included in our model. 
Therefore,	we	used	range	maps	(IUCN,	2020;	USDA,	2022)	to	trim	
these habitat suitability predictions to only include areas each spe-
cies is known to inhabit. These predicted measures were then anno-
tated	onto	a	10 km	grid	of	points	across	the	country,	predicting	the	
relative abundance of all members of the mammal community we 
modelled.	At	this	point	we	excluded	the	North	American	porcupine	
(Erethizon dorsatum)	from	the	analysis	because	of	a	poor	fit	between	
their predicted and actual distribution, resulting in 25 modelled 
species.

2.4  |  Describing communities and ecological 
impacts (6–9)

We	 used	 hierarchical	 clustering	 (JMP,	 SAS,	 Cary,	 NC,	 USA)	 to	
group sites with similar mammal communities, based on the pre-
dicted	relative	abundance	of	each	species.	We	used	these	to	de-
scribe	a	number	of	clusters	chosen	to	represent	coarse	(n = 8)	and	
fine	(n = 16)	scaled	groupings	to	roughly	align	with	the	level	of	de-
tail	in	the	level	I	and	level	II	ecoregions	(Omernik	&	Griffith,	2014).	
We	compared	the	match	of	these	communities	with	plant	derived	
ecoregions	using	a	10 km	grid	of	points	 annotated	 to	 level	 I	 and	
level	 II	 ecoregions	 (Omernik	&	Griffith,	2014).	We	 then	mapped	
the location of these clusters and calculated the average relative 

abundance for each species in each region. Following the approach 
of	two	recent	papers	(Parsons	et	al.,	2022; Ramirez et al., 2021),	
we calculated the potential relative ecological impact of each spe-
cies as a consumer of plants or prey based on their activity at a 
site,	their	body	size	and	their	diet.	We	calculated	a	scaled	measure	
of species activity by combining the camera trap data detection 
rate	(predicted	from	GJAM	already	scaled	by	survey	area	for	each	
species),	average	group	size	and	average	amount	of	time	spent	in	
front of the camera:

where Dsj is the scaled activity of species s at camera location j, nsj 
is the total count of species s on camera j divided by the expected 
detection area of a camera based on body size of species s and Dj 
is the total number of days camera j ran. ts is the average amount 
of time species s spent in front of camera traps in seconds and gs 
is the average group size of species s	on	camera	 traps.	We	used	
detection	 rates	 predicted	 from	 the	GJAM	model,	which	 already	
account for differences in camera detection area based on body 
size	 (this	 correction	was	made	 to	 data	 used	 in	 GJAM).	 Because	
of the fact that the group size and time in front of the camera 
were not available for all datasets, we calculated average values 
for	each	species	from	the	Snapshot	USA	data	 (Cove	et	al.,	2021; 
Kays, Cove, et al., 2022).

Next, we used this measure of animal activity at a site to esti-
mate their potential ecological impacts by adding information on 
body size and diet following:

where Ms	 is	 the	 metabolically	 active	 tissue	 (species	 average	 kg
0.75; 

Kleiber, 1947 in species s),	psv is the percent of the diet of species s 
made up of items from trophic level v and dsj is the average scaled spe-
cies	activity	 in	front	of	a	camera	(Equation 4).	Data	on	species	mass	
and	diet	were	drawn	from	the	PANTHERIA	and	CARNIDIET	databases	
(Jones	et	al.,	2009;	Middleton	et	al.,	2021).	We	used	the	more	detailed	
data	in	CARNIDIET	to	classify	the	proportion	of	a	species	diet	that	was	
large	or	small	prey	for	the	carnivores	(15-	kg	cut-	off).	We	quantified	the	
proportion of their dietary items that were large or small prey while 
excluding	trace	dietary	items	(<15%	volume	per	sample).	This	ecolog-
ical impact metric expresses in an index of the kg of mammal biomass 
supported by potential feeding on a given food type, weighted by the 
time spent in a given area.

3  |  RESULTS

Camera	 traps	 at	 6645	 locations	 documented	215,722	 visits	made	
by	 25	 focal	 mammal	 species	 (Table S1, which also has scientific 
names	for	all	species).	Our	GJAM	models	including	measures	of	for-
est	seed	production	performed	much	better	(many	fewer	Deviance	

(3)Area = 1.65 ×mass0.33

(4)Dsj =

(

nsj

Dj

)

∗ ts ∗gs

(5)Isv = Ms × psv × dsj
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    |  7 of 16KAYS et al.

Information	 Criterion	 (DIC)	 points)	 than	models	 using	 the	 simpler	
measure	 of	 forest	 cover.	 The	 GJAM	 model	 converged	 well,	 with	
stable beta chains and most species had good model performance 

(Table S3).	Using	a	sensitivity	analysis,	we	 identified	climate	varia-
bles as being the most important factors, followed by a combination 
of	habitat,	terrain	and	human	factors	(Figure 2a).

F I G U R E  2 Model	results	for	
generalized joint attribute model 
of mammal abundance based on 11 
covariates.	(a)	The	sensitivity	of	the	full	
community model to each covariate, 
showing that climate variables are the 
most	important	(highest	sensitivity).	
This sensitivity measure is designed to 
evaluate covariate importance among 
multiple response variables and multiple 
continuous	predictors	(15).	(b)	The	β 
values	for	the	significant	(95%	credible	
intervals	not	overlapping	zero)	covariates	
for each species’ model showing the 
direction	and	magnitude	of	effects	(see	
Table S2	for	all	values).	The	dark	line	
shows the median value, the grey boxes 
show	the	lower	and	upper	quartile	and	the	
whiskers	show	1.5	the	interquartile	range.

 14724642, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ddi.13900 by B

ridgew
ater State U

niversity, W
iley O

nline L
ibrary on [27/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 16  |     KAYS et al.

Estimated relationships between the relative abundance of in-
dividual species and environmental conditions followed expecta-
tions	based	on	species	biology	(Figure 2b, Figure S2, Table S4).	For	
example,	Eastern	grey	squirrels	had	a	strong	positive	relationship	
with human population size, as did other well- known anthrophilic 
species	(e.g.,	northern	raccoon,	red	fox,	eastern	chipmunk,	Virginia	
opossum,	white-	tailed	deer)	and	black-	tailed	jackrabbit,	wild	pigs	
and snowshoe hare had the strongest negative relationship with 
human population size. Forest cover weighted by the type and 
amount of seeds they produce was important in explaining the 
distribution	of	a	number	of	species,	especially	squirrels.	Hard	mast	
production was positively associated with abundance of eastern 
grey	squirrels,	eastern	chipmunks	and	American	red	squirrels,	but	
negatively	 associated	 with	 eastern	 fox	 squirrels.	 Big	 nuts	 were	
positively	associated	with	eastern	grey	and	eastern	fox	squirrels,	
while	 conifer	mast	was	 positively	 associated	with	 American	 red	
squirrel	 abundance.	 Although	 none	 of	 these	 relationships	 were	
surprising, taken together, they do allow us to predict the relative 
abundance	of	each	 species	across	 the	United	States	 (Figure S3),	
enabling new insights into community structure and potential eco-
logical impacts.

3.1  |  Clustering communities

Our clustering analysis on the predicted relative abundance of 
mammals	throughout	a	10 km	grid	of	points	across	the	contermi-
nous	 United	 States	 shows	 the	 hierarchical	 divisions	 of	 mammal	

communities, with the first split being between the eastern and 
western	United	States	 (Figure 3, Figure S4).	 The	eastern	United	
States	 is	 then	split	 latitudinally,	with	 the	 four	coarse	community	
clusters being subtropical, southeast, midwest and northeast. 
The western communities also divide into four groups, but the 
patterns appear to be driven more by precipitation than latitude. 
There is a broad western and central plains group, one around 
the extreme hot areas of the southwest and another in the ex-
treme	cold	parts	of	the	Rocky	Mountains.	These	patterns	broadly	
match those of ecoregions defined around plant communities 
(Figure S1),	 with	 82%	 of	 the	 area	 of	 the	 8-	community	 mammal	
map	matching	up	with	the	respective	Level	 I	ecoregion	and	62%	
of	 the	 16-	community	map	matching	 up	with	 Level	 II	 ecoregions	
(Table S5).

The differences between the eight primary communities are 
shown by the expected average relative abundance for species 
(Figure 4, Figure S4).	The	east–west	split	 is	most	obviously	asso-
ciated with higher relative abundance overall in the east, driven 
especially	by	many	squirrels,	northern	 raccoons	and	white-	tailed	
deer. Those species are present in some parts of the west, but are 
much less abundant and mule deer replace white- tailed deer in 
these	 drier	 western	 regions.	 The	 Rocky	Mountain	 community	 is	
the most divergent in the west and has by far the lowest northern 
raccoon	 abundance.	 A	 number	 of	 species	were	 characteristic	 of	
one	or	two	regions	(e.g.,	abundant	in	one	or	two	regions,	but	rare	
or	absent	elsewhere)	including	elk	in	the	Rocky	Mountains,	black-	
tailed jackrabbits in the southwest and wild pigs and nine- banded 
armadillos in the southeast. There was also a suite of cold- adapted 

F I G U R E  3 Comparing	mammal	regions	to	the	level	1	US	Environmental	Protection	Agency	(EPA)	ecoregions	(Omernik	&	Griffith,	2014)	
shows	a	very	good	match	for	the	Great	Plains,	Northern	Forest	and	Subtropical	zone.	The	Eastern	Temperate	Forest	region	is	split	into	2	
for	mammals	while	the	general	western	mammal	region	includes	4	plant	ecoregions.	The	Rocky	Mountains	mammal	region	matches	the	
northwestern	forested	mountains,	in	part,	but	does	not	include	the	Sierra	Nevada	range.	The	southwest	mammal	region	is	not	recognized	in	
plant	regions.	At	the	more	detailed	level,	the	split	of	western	and	Great	Plains	regions	generally	matches	between	plants	and	mammals,	as	
does	the	split	of	Northeast	into	2	regions	(except	the	lower	peninsula	of	Michigan	which	clusters	with	the	Midwest	mammals).	The	split	of	
the	Rockies	and	Midwest	each	into	3	regions	is	not	matched	by	the	plant	ecoregion.
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    |  9 of 16KAYS et al.

species	 that	 were	 most	 abundant	 in	 the	 Rocky	 Mountains	 and	
northeast forests including moose and snowshoe hares. Finally, 
several broad- ranging species were present in many different re-
gions, but had variable abundance across space, which helped dis-
tinguish communities.

The	 finer	 scale	 differences	 that	 distinguish	 the	 16	 communi-
ties tended to be due to minor differences in relative abundance 
(Figure S4).	The	western	region	is	split	into	three	groups	with	fewer	
Virginia	opossums	in	zone	1,	more	northern	raccoons	in	zone	2	and	
fewer black- tailed jackrabbits but more black bears and bobcats in 
zone 3. The central region is split into two with more typical warm- 
tolerant	 species	 (i.e.,	 grey	 fox,	 Virginia	 opossum,	 nine-	banded	 ar-
madillo,	 wild	 pigs,	 black-	tailed	 jackrabbit)	 in	 the	 south	 and	 more	
cold-	adapted	species	 (i.e.,	elk,	 red	fox,	 red	squirrel)	 in	 the	northern	
zone	 (5).	Mule	deer	and	Eastern	 fox	squirrels	were	more	abundant	
in	zone	5,	while	Eastern	grey	squirrels	were	more	abundant	in	zone	
6.	The	Rocky	Mountains	are	also	split	 into	three	regions	with	a	pe-
riphery	(7),	northern	core	(8)	and	southern	core	(9),	with	differences	
driven	especially	by	increases	in	red	squirrel	and	elk	abundance	and	
decreases in racoons in higher and more southerly mountains. The 
Midwest	zone	is	split	into	three	due	mostly	to	differences	in	squirrels,	
with	zone	12	having	more	eastern	fox	squirrels,	zone	14	having	more	
eastern	grey	squirrels	and	zone	13	having	similar	but	very	high	levels	
of	both.	Virginia	opossums	are	more	abundant	in	zone	13,	while	zone	
14	had	higher	levels	of	American	black	bears,	bobcats	and	grey	foxes	
that	also	comprised	portions	of	the	Mid-	Atlantic.	Finally,	the	north-
ern	forests	split	 into	two	zones,	with	the	cold-	adapted	species	(i.e.,	
snowshoe	hare,	moose,	grey	wolf)	being	more	common	in	the	north-
ern	zone	(15)	and	less	cold-	adapted	species	(i.e.,	Eastern	grey	squirrel,	
eastern	fox	squirrel,	racoon,	Virginia	opossum)	being	more	common	
in	the	southern	zone	(16).

3.2  |  Ecological impacts

We	 can	 represent	 spatially	 explicit	 ecological	 impacts	 by	 mapping	
the relative strength of the ecological roles played by common mam-
mals across the country based on their typical abundance, time spent 
in	front	of	the	camera,	weight	and	diet	(Figure 5).	Potential	herbivory	
pressure is driven by the larger ungulates and is the highest in the Rocky 
Mountains	that	are	home	to	elk	and	abundant	mule	and	white-	tailed	
deer, followed by eastern regions with high numbers of white- tailed 
deer.	Similarly,	the	potential	ecological	impact	of	invertebrate	consum-
ers	is	also	driven	by	the	three	largest-	bodied	species:	American	black	
bears, wild pigs and northern raccoons. The addition of nine- banded 
armadillos in the subtropical region helps give it the highest overall 
invertebrate predation pressure. Northern raccoons are by far the 
most abundant predator of small prey and they drive community- wide 
patterns of small prey predation pressure in the east, while predation 
pressure from other predators on small prey remains consistent across 
regions.	Finally,	predation	pressure	on	large	prey	(>15 kg)	is	highest	in	
the	Rocky	Mountains	where	cougars	and	grey	wolves	are	most	abun-
dant. Coyotes hunt far fewer large prey than wolves or cougars, but 
their abundance across the country makes them the most important 
risk to large prey in many regions.

4  |  DISCUSSION

We	 empirically	 derived	 communities	 of	mammals	 based	 on	 pat-
terns of abundance and found them strikingly similar to well- known 
ecoregions	 created	 from	plant	 communities	 (Figure 3, Table S5).	
More	 than	 just	 pattern	matching,	 our	 niche	models	 give	 insight	
into	the	ecological	mechanisms	underlying	these	communities.	We	

F I G U R E  4 Average	species'	relative	
abundances across the eight communities 
with species colour coded as large 
carnivores	in	red	(although	they	are	so	
relatively	rare	they	are	hard	to	see),	small	
carnivores in purple, insectivores in blue 
and	herbivores	in	green	(small)	or	brown	
(large).	Animal	silhouettes	are	provided	
for the most common species to help 
distinguish	colour	gradients.	Abundances	
for	the	more	detailed	16	communities	are	
shown in Figure S5.
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10 of 16  |     KAYS et al.

found that climate variables are the most important influencers, 
driving	 a	primary	 split	 between	 the	eastern	 and	western	United	
States	and	producing	secondary	divisions	along	temperature	gra-
dients in the east and precipitation gradients in the west that par-
allel those seen in plant ecoregions. Food production by forests is 
also an important predictor of abundance, especially larger hard 
mast producing trees that have a long coevolutionary history with 
mammals	 (Stapanian	&	Smith,	 1978).	Anthropogenic	 disturbance	
to the landscape is correlated with mammal abundance in con-
trasting ways for different species, but it is not presently affect-
ing mammal communities to the extent observed with climate and 
food. The resulting patterns of mammal abundance, especially of 
larger	 species,	 have	 ecological	 consequences	 due	 to	 differences	
in the potential for herbivory and predation across the continent.

Three	 climatic	 covariates	 (precipitation,	 temperature,	 aridity)	
were the most important predictors of abundance across the mam-
mal	 communities	 we	 modelled	 (Figure 2a).	 Although	 climate	 has	
been linked to major evolutionary events in the history of North 

American	mammals	 (1),	 no	 studies	 have	 evaluated	 its	 importance	
on contemporary mammal distributions in comparison with habitat 
and human factors. These effects can also be seen when consider-
ing the community maps and graphs of relative abundance, where 
overall	mammal	abundance	is	higher	in	wetter	regions	(e.g.,	east	and	
Rocky	Mountains)	and	where	latitudinal	change	in	zones	(e.g.,	zones	
14–16)	reflect	species	turnover	and	addition	of	more	abundant	cold-	
adapted	species	 (i.e.,	 snowshoe	hare,	moose).	Our	models	 suggest	
that climate change will have strong impacts on the composition of 
mammal	 communities	 and	we	 are	 able	 to	 quantify	 these	 relation-
ships	to	predict	those	effects	for	25	species	(Table S4).

Human	 factors	 (population	 density,	 agriculture)	 were	 less	 im-
portant than climate, but still had strong impacts on mammal abun-
dance, although in contrasting ways, showing how some species 
successfully occupy urbanized spaces while others do not. Human 
population	density	was	 important	for	68%	of	species,	with	a	posi-
tive	relationship	for	11	species	and	negative	for	6	species	(Figure 2b, 
Tables S2 and S4).	 Agriculture	was	 strongly	 negatively	 correlated	

F I G U R E  5 Relative	strength	of	
ecological impacts of mammals mapped 
out	per	coarse	region	(left	side)	and	per	
species	(right	side)	as	predators	on	large	
vertebrate prey, small vertebrate prey, 
invertebrates or herbivores on plants. 
These indices of potential ecological 
impact combine aspects of each species' 
relative abundance, body size and diet 
(units:	[kg	mammals]*[time	at	a	site]/day/
m2).	Darker	grey	colours	indicate	stronger	
effects, with regional values and the 
relative contribution of species shown on 
graphs to the right. This ecological impact 
metric	is	an	index	of	mammal	biomass	(kg)	
supported by potential feeding on a given 
food type, weighted by the time spent in a 
given area.
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with abundance for four carnivore species and snowshoe hare, but 
positively associated with eight species of herbivores and omnivores 
(Figure 2b, Table S2).	The	simplistic	covariates	we	were	able	to	use	for	
this large scale analysis represent a more complex relationship and 
additional variance could likely be explained with more information 
on	hunting	by	humans	and	recreation	patterns	(Kays	et	al.,	2017),	ef-
fects	of	historical	extirpations	(Laliberte	&	Ripple,	2004)	and	more	
nuanced information about the types and intensities of agricultural 
developments	 (Caldwell	 &	 Klip,	 2023).	 Nonetheless,	 our	 data	 en-
compass the full range of variation of human footprint, from cities to 
farmland	to	wilderness	(Figure S1),	allowing	us	to	broadly	compare	
the importance of humans to other factors.

The seeds and fruits produced by trees represent food for many 
mammal species and new large- scale estimates of their production 
(Clark	et	al.,	2019)	allowed	us	 to	 relate	 them	to	animal	abundance	
over broad scales for the first time, providing substantially better 
predictions than using simple measures of forest cover. The largest 
seeds	(big	nuts:	Carya and Juglans)	and	other	hard	masting	species	
were	 the	 most	 important	 (Figure 2, Figure S2).	 This	 approach	 of	
quantifying	the	potential	value	of	a	forest	by	the	density	of	different	
kinds of seeds it produces also has modelling advantages over using 
categorical forest types. For the seed and fruit eating species, these 
relationships probably reflect direct benefits of the trees producing 
food for these mammals. The importance of mast for other species, 
such as predators, was lower, but still important by reflecting other 
aspects	of	habitat	quality	(i.e.,	prey	abundance)	associated	with	mast	
production.	We	grouped	tree	species	into	four	broad	categories	that	
reflect	mammal	 feeding	preferences	 (Table S4, Figure S6),	 but	ex-
pect more nuanced relationships could be discovered through more 
fine- scale dietary categories related to species’ known dietary pref-
erences	(Moller,	1983).

Ecological maps are key for many aspects of conservation, in-
cluding supporting biodiversity and red list assessments, predicting 
carbon	dynamics	and	assessing	disease	risk	(Gatti	et	al.,	2021).	Our	
ecological	maps	provide	a	unique	perspective,	not	only	because	they	
are specific to mammal communities, but also because they provide 
the	basis	for	quantifying	the	relative	ecological	impact	of	mammals	
across these zones. Our results show strong regional differences in 
mammalian	herbivory	and	predation	on	small	prey	(e.g.,	~2× higher 
in	much	of	 the	eastern	United	States	 than	some	western	 regions).	
These	maps	also	show	that	parts	of	the	Rocky	Mountains	have	high	
levels	of	herbivory	and	predation	on	large	prey.	Whether	the	higher	
absolute herbivory translates into higher pressure per plant would 
depend on plant abundance and defences, which are clearly dif-
ferent	across	 the	United	States	 (e.g.,	 sparse,	well-	defended	desert	
plants	vs.	abundant	leafy	eastern	deciduous	forests).	These	results	
also emphasize the ecological importance of common large species 
over smaller rare species of the same guild, with animals like coyotes, 
northern raccoons and white- tailed deer having the overall largest 
roles	across	the	continent.	We	hope	these	results	will	be	useful	 in	
generating hypotheses about the mechanisms underpinning ecolog-
ical	impacts	that	can	be	tested	with	field	experiments	(e.g.,	herbiv-
ory; Rosin et al., 2017,	predation	risk	Schuttler	et	al.,	2016).

One drawback of our study is that it only included 25 species of 
mammals and future work could improve analyses by adding more 
species and understudied habitats. Despite collecting one of the 
largest camera trap datasets ever published, many species remained 
data deficient, limiting our ability to model their abundance at a con-
tinental	 scale	 and	 in	 undersampled	 regions	 in	 the	western	United	
States.	 Adding	 more	 camera	 data	 through	 standardized	 surveys	
(Cove	et	al.,	2021),	common	repositories	(Ahumada	et	al.,	2019),	or	
integrating	 other	 types	 of	mammal	 datasets	 (Pacifici	 et	 al.,	 2017),	
could help meet this goal. Expanding the species included in anal-
yses could change the resulting mammal communities identified, 
especially through the addition of species endemic to small regions. 
However, our work does include the most common large mammals, 
which	have	the	strongest	ecological	impacts	(Figure 5, Equation 5),	
so we expect fewer changes to those maps of ecological function. 
Our work is also limited by having only one model per species, thus 
forcing the same ecological relationships across an entire species’ 
range	and	not	explicitly	considering	species	interactions.	Most	wide-	
ranging species probably have some variation in their ecology due to 
local	adaptation	or	subspecific	genetic	variation	(Pease	et	al.,	2022; 
Rollinson et al., 2021)	and	accounting	for	this	would	 improve	 local	
abundance predictions.

This work shows the potential for continental- scale estimates of 
animal	 abundance	 through	 large	 collaborations	 (Cove	et	 al.,	2021; 
Kays, Cove, et al., 2022),	data	standards	and	sharing	tools	(Ahumada	
et al., 2019)	 and	 the	 growing	 diversity	 of	 relevant	 ecological	 data	
(i.e.,	mast	production	Clark	et	al.,	2019).	Our	results	show	that	the	
patterns of modern mammal communities, as with plant ecoregions, 
are driven by climate and are relatively stable across broad land-
scapes despite substantial variability in human densities and infra-
structure. This finding also highlights the potential impact of rapid 
climate	change	(Shukla	et	al.,	2019)	to	these	communities	and	raises	
questions	about	the	ability	of	plant	and	animal	communities	to	keep	
pace without active management. Ecoregions have proven a useful 
tool for mapping existing patterns and we see potential for our em-
pirical niche- driven approach to be extended to document changes 
in	near	real	time	(Kays	&	Wikelski,	2023)	and	offer	predictions	useful	
for conservation management about where species are likely to do 
best in future conditions.
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