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WEAKLY NONLINEAR AND NUMERICAL ANALYSES OF
DYNAMICS IN A SOLID COMBUSTION MODEL∗

L. K. GROSS† AND J. YU‡

Abstract. This paper contains qualitative and quantitative comparisons between a weakly
nonlinear analysis and direct numerical simulations of a free-boundary problem. The former involves
modulating the most linearly unstable mode, taking a small perturbation of the neutrally stable value
νc of a parameter ν related to the activation energy. Analogously, we perform the direct numerical
computations near the marginally unstable value, namely, ν = νc − ε2, where ε is rather small.

We delineate the role of a different parameter σ (related to the Arrhenius kinetics) in the com-
bustion dynamics when ν = νc − ε2. In particular, the numerics show that varying σ produces a
period-doubling scenario when ε lies approximately between 0.08 and 0.12. We describe the σ inter-
vals within which complex dynamics occur for various values of ε and for ν fixed at νc − ε2. When
ε drops to approximately 0.06, the asymptotic and numerical solutions agree well for all physical
values of σ.
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1. Introduction. In this article, we study the nonuniform dynamics of front
propagation in a free-boundary model of solid combustion, through both weakly non-
linear analysis and direct simulations. We do the first quantitative comparison of the
two methods.

The asymptotic technique applies to the weakly unstable setting. In particular,
we fix the bifurcation parameter ν related to the activation energy to within a rather
small number ε2 of the neutrally stable value νc. By solving numerically in the same
regime, we closely investigate the role of a parameter σ associated with the Arrhenius
kinetics. In particular, period-doubling and eventual chaos develop as the kinetics
parameter σ decreases (and the bifurcation parameter ν remains at a deviation of ε2

from its critical value).

Weakly nonlinear analysis involves modulating the most linearly unstable mode.
Within quite a small neighborhood of the neutral stability boundary, Fourier spectra
of the numerical quasi-steady-state solutions indicate a regime in which a single mode
dominates, as well as complex regimes of front propagation.

As the bifurcation parameter ν approaches ever closer to the neutrally stable
value, the range of the parameter σ for which period-doubling and other strongly
nonlinear dynamics occur shrinks. Sufficiently near the stability threshold (ε approx-
imately 0.06), numerical solutions for all values of σ agree closely with the weakly
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nonlinear solutions. By varying ε, we quantify the domain of applicability of the
weakly nonlinear analysis.

The problem under consideration models, for example, solid combustion, in which
a chemical reaction converts a solid fuel directly into solid products with no intermedi-
ate gas phase formation. For instance, in self-propagating high-temperature synthesis
(SHS), a flame wave advancing through powdered ingredients leaves high-quality ce-
ramic materials or metallic alloys in its wake. (See, for instance, [15, 17, 20].)

The propagation results from the interplay between heat generation and heat
diffusion in the medium. A balance exists between the two in some parametric regimes,
producing a constant burning rate. In other cases, competition between the reaction
and the diffusion results in a wide variety of nonuniform behaviors, some leading to
chaos.

Shkadinsky, Khaikin, and Merzhanov [18] predicted the simplest oscillatory re-
gimes through numerical simulation on reaction-diffusion partial differential equations
(PDEs). The system contains Arrhenius-kinetics terms that account for chemical
conversion throughout the spatial domain.

Various works have explored numerically the dynamics of models that employ
approximations to the Arrhenius kinetics. For instance, in [1], Arrhenius kinetics
with a cutoff was used to observe chaotic pulsations, following a number of period-
doubling bifurcations.

Other approximations exploit the narrowness of the reaction zone. A point-source
model has an exact traveling-wave solution and is more amenable to analysis than
one with the full Arrhenius kinetics. Matkowsky and Sivashinsky [14] studied a
concentrated-kinetics model in the case of large activation energy. The δ-function
kinetics follow from an analysis similar to that of [19].

This free-interface problem has been studied numerically in [4]. For a sufficiently
large activation energy, the work showed transitions to chaos via a period-doubling
solution and highly irregular relaxational oscillations. The authors attributed a lack
of sequential secondary bifurcations to the difference between the point-source and
distributed-kinetics models (as in [1]). Later, however, in [9], the entire spectrum of
behavior was observed for the free-interface model, as previously had been seen for
distributed kinetics.

In [9], the authors performed numerical computations on a second model of solid
combustion as well. They motivate it by noting that both the reaction-diffusion model
as in [18] and the free-interface model in [14] assume a constant value of thermal
diffusivity. However, some problems manifest a clear dependence of this parameter
on degree of conversion. In fact, when the burnt product is a foam-like substance, heat
diffusion in the product region is negligible. For such cases, they consider a model
that includes the heat equation on a semi-infinite domain ahead of the reaction and
a nonlinear kinetic condition imposed on the moving boundary. The present paper
uses this free-boundary problem.

Note that both the free-interface (two-sided) model and the free-boundary (one-
sided) model stem from reaction-diffusion PDEs with full Arrhenius kinetics. To
emphasize, the one-sided model is not an adaptation of the two-sided model; rather
each of them is a viable derivative of the reaction-diffusion model. The two-sided
model assumes a single constant conductivity throughout the reactant and product
zones. The one-sided model assumes zero conductivity in the burned region. In some
cases the first approximation is more appropriate, in others the second.

Belyaev and Komkova discovered a pulsating regime in the burning of a chrome-
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magnesium thermite in 1950 [2]. A planar front may have oscillated with a constant
frequency in their experiments, but they did not observe the process in detail. Later
Merzhanov, Filonenko, and Borovinskaya [16] observed experimentally both the pe-
riodic propagation of a flat front in SHS as well as spinning waves, showing a fuller
understanding of the behaviors. All the models discussed in this literature review
exhibit the same spectrum of dynamics as experiments. Specifically, we refer to com-
puted solutions of (i) the reaction-diffusion system governed by the full Arrhenius
kinetics (e.g., [5]), (ii) the reaction-diffusion system with Arrhenius kinetics with a
cutoff (e.g., [1]), and models that use point-source kinetics like (iii) the free-interface
(“two-sided”) model with constant heat diffusivity (e.g., [9]), as well as (iv) the free-
boundary (“one-sided”) model, in which heat transfer behind the flame front (in the
burned matter) is qualitatively unimportant (e.g., [9]).

Simulations on all these models show the same dynamical behaviors as one pushes
the bifurcation parameters deeper into the instability regions. In particular, numerical
simulations and analysis in [9] show that dynamics of the two-sided and one-sided
problems agree extremely closely.

In the present work, we fix the bifurcation parameter ν within ε2 of the neutrally
stable value and vary the kinetics parameter σ, rather than exploring regimes more
and more strongly unstable in ν. In addition, we vary ε, thereby also changing ν,
and study the impact on the dynamics with respect to the kinetics parameter σ. We
will point out the agreement with dynamical scenarios described in previous studies,
which use a variety of models.

The stability thresholds for uniformly propagating fronts generally differ for all of
the different kinetics mentioned, however. Distributed kinetics have only the numeri-
cal approximate bifurcation values. Intricate bifurcation analyses [13, 10] of instabil-
ities for the point-source models have also classified the interactions of clockwise and
counterclockwise spinning waves on the surface of a cylinder. Margolis’s review paper
[13] includes a thorough discussion of resonance phenomena, treating sample radii that
yield close, as well as equal, eigenvalues. Also, Booty, Margolis, and Matkowsky [3]
predicted cascades of bifurcations from a double eigenvalue of a linearized model of
condensed-phase combustion in a long cylindrical sample. They show that the inclu-
sion of melting in the model makes the neutral-stability threshold more accessible. A
bifurcation parameter ν in the present work is restricted to a smaller neighborhood of
the value corresponding to a single neutrally stable eigenvalue. A different parameter
σ is varied to produce period-doubling behaviors numerically.

Combustion in two dimensions can be described by a one-dimensional model when
the only unstable mode corresponds to the dynamics with no spatial variation in the
transverse direction. For example, the linear stability analysis in [12] shows that for a
free-boundary model, a flat front dominates the behavior for the case of a sufficiently
narrow strip of material with insulated edges.

In particular, to satisfy the boundary conditions, the wave numbers are integer
multiples of π/a, where a is the strip width [12]. If a < π, all modes are stable
for ν > 1/3. Exactly one mode (the zeroth mode) loses stability at νc = 1/3. The
zero mode corresponds to the dynamics with no spatial variation in the transverse
direction (i.e., to the one-dimensional case). If, on the other hand, π < a < 2π, then,
as we decrease ν, the first mode π/a loses stability prior to the flat mode, namely,
at a value of ν > 1/3. In both cases (a < π and π < a < 2π) the weakly nonlinear
analysis shows that the evolution is governed by a complex Landau–Stuart ordinary
differential equation [11]. (See what follows for the narrow-strip analysis.)
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At a = π, the flat mode and the first wavy mode both lose stability at νc = 1/3,
while the other modes remain stable. The nonlinear interaction of the flat and curvy
modes is the subject of the weakly nonlinear analysis in [12], which culminates in the
derivation of a system of two complex Landau–Stuart equations. (Notice that if the
width a is infinite, a continuum of modes goes unstable, and the evolution is governed
by Ginzburg–Landau PDEs.)

In the remainder of this section, we introduce the governing equations and, for
convenience, summarize a linear stability analysis. Because we consider the case in
which a zero-wavenumber mode is the most unstable, we present the model in one
space dimension. In [21], we do a full linear stability study for the two-dimensional
problem formulated as an initial-value problem.

Section 2 contains a weakly nonlinear analysis, and section 3 shows simulations
in the marginally unstable regime. In computations, the dynamics unfold as the
parameter σ associated with the Arrhenius kinetics decreases (while the bifurcation
parameter ν remains fixed within ε2 of its neutrally stable value).

Section 4 presents quantitative comparisons of the asymptotic solutions and com-
puted solutions. Some qualitative comparisons for a similar problem—involving com-
peting flat and wavy (two-dimensional) modes—appear in [6] (together with numerics
that venture into more strongly unstable regimes than in the present paper). Here
we investigate the numerical solutions for marginally unstable values of the activation
energy, allowing a full range of kinetics-parameter values.

Specifically, we perform the computations with ν fixed near the marginally un-
stable value, namely, ν = νc − ε2, where ε is fairly small. For ε smaller than about
0.12, we see the smooth periodic solutions that the weakly nonlinear analysis pre-
dicts, provided σ has an appropriate value. In particular, Fourier transforms of the
numerical data illustrate the ranges of σ in which the analysis accurately predicts the
quantitative behavior of solutions.

The data simultaneously reveal the development of complex dynamics in various
kinetics-parameter regimes (with the inverse activation energy ν held at ε2 units below
the stability threshold), when ε exceeds about 0.06. When ε drops below this value,
the σ intervals of strongly nonlinear dynamics disappear.

In the model, we seek the temperature distribution u(x, t) in one spatial dimen-
sion and the interface position Γ(t) = {x|x = f(t)} that satisfy the appropriately
nondimensionalized free-boundary problem

∂u

∂t
=

∂2u

∂x2
, x > f(t), t > 0,(1.1)

V = G
(
u
∣∣
Γ

)
, t > 0,(1.2)

∂u

∂x

∣∣∣∣
Γ

= −V, t > 0.(1.3)

Here V is the velocity of the rightward-traveling interface, i.e.,

V =
df

dt
.

In addition, the temperature satisfies the condition

u → 0 as x → ∞;(1.4)
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that is, the ambient temperature is normalized to zero at infinity.
To model solid combustion, we take the Arrhenius function as the kinetics function

G in the nonequilibrium interface condition (1.2) [4, 17]. Then, with appropriate
nondimensionalization, the velocity of propagation relates to the interface temperature
as

V = exp

[(
1

ν

)
u− 1

σ + (1 − σ)u

]
(1.5)

at the interface Γ. Here ν is inversely proportional to the activation energy of the
exothermic chemical reaction that occurs at the interface, and 0 < σ < 1 is the
ambient temperature nondimensionalized by the adiabatic temperature of combustion
products. (See [8].)

Inverting the Arrhenius function (1.5), we reexpress the boundary condition (1.2)
in the form

u|Γ = 1 + νK(V ;σ, ν),(1.6)

where

K(V ;σ, ν) =
ln(V )

1 − (1 − σ)ν ln(V )
.(1.7)

Note the function K(V ) has been introduced to have the convenient properties K(1) =
0, K ′(1) = 1.

For ease of subsequent asymptotic and numerical analysis, we reformulate the
problem in the front-attached coordinate frame:

η = x− f(t), τ = t.

Problem (1.1)–(1.6) then takes the form

∂u

∂τ
=

∂2u

∂2η
+ V

∂u

∂η
, η > 0, τ > 0,(1.8)

u|Γ = u(0, τ) = 1 + νK(V ),(1.9)

∂u

∂η

∣∣∣∣
Γ

=
∂u

∂η

∣∣∣∣
(0,τ)

= −V,(1.10)

lim
η→∞

u = 0.(1.11)

The free-boundary problem (1.8)–(1.11) admits a traveling-wave solution

u0(η, τ) = exp(−η), f0(τ) = τ.(1.12)

The problem linearized about the traveling wave has a normal-mode solution of the
form

w = eλτg(η;λ), φ = eλτ ,(1.13)
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where w and φ represent the perturbations about u0 and f0, respectively. Substituting
them into the linearized problem produces an eigenvalue problem in λ and g(η;λ).

The discrete spectrum values are zero and

λ =
1 − 3ν ±

√
(3ν − 1)2 − 4ν3

2ν2
.(1.14)

The eigenfunction corresponding to the eigenvalue λ is

g(η;λ, ν) = (1 + νλ) exp
(
−
(
1 +

√
1 + 4λ

) η

2

)
− exp(−η).(1.15)

Linearly unstable behavior occurs for this system only when �λ is positive.
The basic solution (1.12) is neutrally stable under a small perturbation of the

form (1.13) if �λ = 0. Setting �λ = 0 in (1.14) gives the critical value νc of ν,
namely,

νc =
1

3
.(1.16)

The corresponding neutrally stable eigenvalues from (1.14) are ±iω, where

ω =
√

3.(1.17)

If ν < 1/3, then �λ > 0, and the basic solution is linearly unstable. (See, for example,
[12, 21].)

2. Weakly nonlinear analysis. Let ε2 be a small deviation from the neutrally
stable value of ν, namely,

ε2 = νc − ν =
1

3
− ν.(2.1)

We consider the time scales

t0 = τ, t1 = ετ, t2 = ε2τ

as independent variables, so that ∂/∂τ = ∂/∂t0 + ε ∂/∂t1 + ε2 ∂/∂t2. We then seek a
solution of the form

u(η, t0, t1, t2) = e−η + εA(t1, t2)e
i
√

3t0g

(
η; i

√
3,

1

3

)
(2.2)

+ ε2w2(η, t0, t1, t2) + · · · + CC,

f(t0, t1, t2) = t0 + ε

{
A(t1, t2)e

i
√

3t0 +
1

2
B(t1, t2)

}
+ ε2φ2(t0, t1, t2) + · · · + CC,

where A(t1, t2) is complex, and “CC” stands for complex-conjugate terms. The real-
valued function B(t1, t2) modulates the constant-velocity solution to the linearized
problem.

Notice that in O(ε), the weakly nonlinear solution (2.2) has only one Fourier term
in t0. We will show below in (2.19)–(2.20) that the O(ε2) term contains the second
harmonic. We refer to the expansion (2.2) as a “single-mode approximation” because
the leading-order perturbation contains only one mode in fast time.
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Making the substitutions (2.2) and equating like powers of ε results in subproblems
for the terms in the perturbation expansions above, subject to solvability conditions
on the amplitudes A and B. The O(1) problem is satisfied identically because in (2.2)
we took the temperature-interface pair (u, f) perturbed about (e−η, t0), a solution to
the nonlinear problem (1.8)–(1.11). The O(ε) problem is just the linearized problem
with ν = νc = 1/3, which is satisfied identically by the O(ε) terms in the expansions
(2.2).

The problems of order εj , j = 2, 3, are

∂wj

∂t0
− ∂2wj

∂η2
− ∂wj

∂η
+ e−η ∂φj

∂t0
= Qj(η, t),(2.3)

wj |η=0 −
1

3

∂φj

∂t0
= αj(t),(2.4)

∂wj

∂η

∣∣∣∣
η=0

+
∂φj

∂t0
= βj(t),(2.5)

lim
η→∞

wj = 0,(2.6)

where t = (t0, t1, t2). For brevity, we have named the right-hand sides above as Qj ,
αj , and βj . The PDEs (2.3) can be represented as

L1wj + L2φj = P(w1, φ1, . . . , wj−1, φj−1).(2.7)

L1 and L2 are linear operators on bounded functions in L2(Ω), where Ω = {(η, τ)|0 ≤
η < ∞, 0 ≤ τ < ∞}.

According to Fredholm’s alternative, equation (2.7) has a nonsecular (bounded-
in-time) solution if the right-hand side is orthogonal to the null space of the adjoint
operator L∗. That is,

(L1wj + L2φj , v) = 0(2.8)

for v ∈ kerL∗ and the inner product defined such that

(f1, f2) = lim
T→∞

1

T

∫ T

0

∫ ∞

0

f1(η, τ)f2(η, τ) dη dτ.(2.9)

The quantity v in (2.8) satisfies(
− ∂

∂t0
− ∂2

∂η2
+

∂

∂η

)
v = 0,(2.10)

2i

√
3

3
v|η=0 −

(
1 − i

1

3

)
∂v

∂η

∣∣∣∣
η=0

= 0.(2.11)

Nonzero solutions are

u1(η, t0; i
√

3) = exp(i
√

3t0)h(η; i
√

3) and u0(η, t0; 0) = 1,(2.12)

where

h(η; i
√

3) = exp

((
1 −

√
1 − 4i

√
3

)
η

2

)
.(2.13)
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Substituting v = u1 into the solvability condition (2.8) when j = 2 produces the
differential equation

∂A

∂t1
= 0.(2.14)

Substituting v = u0 into the solvability condition (2.8) when j = 2 produces the
differential equation

∂B

∂t1
= AĀr0, r0 = −3(2 + K ′′(1)).(2.15)

Substituting (2.14) and (2.15) into the O(ε2) problem in (2.3)–(2.6) yields the
problem

∂w2

∂t0
− ∂2w2

∂η2
− ∂w2

∂η
+ e−η ∂φ2

∂t0
= A2e2i

√
3t0R2(η) + AĀR0(η) + CC,(2.16)

w2|η=0 −
1

3

∂φ2

∂t0
= A2e2i

√
3t0F2 + AĀF0 + CC,(2.17)

∂w2

∂η

∣∣∣∣
η=0

+
∂φ2

∂t0
= A2e2i

√
3t0G2 + AĀG0 + CC.(2.18)

The solution (w2, φ2) consists of a homogeneous and a particular solution. Because
only the inhomogeneous terms will contribute to the solvability condition at the next
order, we present the nonsecular solution as

w2 = A2e2i
√

3t0g2(η) + AĀg0(η) + CC,(2.19)

φ2 = A2e2i
√

3t0C2 + AĀ + CC,(2.20)

where gj(η), j = 0, 2, satisfy the initial-value problems

g′′j + g′j − ji
√

3gj = ji
√

3C2e
−η −Rj(η),(2.21)

gj(0) = ji

√
3

3
C2 + Fj ,(2.22)

g′j(0) = −ji
√

3C2 + Gj ,(2.23)

g2(η) → 0 as η → ∞,(2.24)

where

Rj(η) = −(−1)j/2g′(η)i
√

3 − 2 − j

4
r0e

−η,(2.25)

Fj =
1

2
(−1)j/2K ′′(1) +

2 − j

12
r0,(2.26)

Gj = −2 − j

4
r0.(2.27)
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Recall that r0 is given in (2.15). Also, g(η) = g(η; i
√

3) is defined via (1.15).
Substituting v = u1 into the solvability condition (2.8) when j = 3 produces the

Landau–Stuart equation

dA

dt2
= χA + βA2Ā,(2.28)

where

χ ≡ −∂λ0

∂ν

∣∣∣∣
ν=νc

=
3

2
(9 +

√
3i).(2.29)

The coefficient β is defined as

β =

∫∞
0

R(η)h̄(η) dη + FU∫∞
0

(g(η) + e−η)h̄(η) dη − 1
3U − 1

,(2.30)

where

R(η) = r0g
′(η) + i

√
3 [2C2ḡ

′(η) − g′2(η) + 2Re (g′0(η))];(2.31)

F =
1

3
(6C2 + ir0

√
3)K ′′(1) + i

√
3

2
K ′′′(1);(2.32)

U = −1

2
(3 + i

√
3).(2.33)

Once we solve the Landau–Stuart equation (2.28) subject to an initial condition,
the full asymptotic expansion (2.2) is known with w2 and φ2 given in (2.19)–(2.20)
and B given in (2.15). In what follows, we compare the asymptotic solution with a
numerical solution over the range 0 < σ < 1 with ν fixed at a small deviation ε2 from
the neutrally stable value 1/3, as given in (2.1).

The amplitude equation (2.28) determines the dynamics of the unstable mode

A(t2)e
i
√

3t0 , subject to self-interaction. The dynamics of the mode depend on the
relationships between the coefficients χ and β and are affected by the kinetics function
K(V ), introduced in (1.7). Recall that the function K(V ) is normalized such that
K(1) = 0 and K ′(1) = 1. The form of the kinetics function comes into play via K ′′(1)
and K ′′′(1), which appear explicitly in r0, Fj , and F of (2.15), (2.26), and (2.32),

respectively. Note from (2.17) that Fj , j = 2, 0, are the coefficients of A2e2i
√

3t0 and
AĀ, respectively, on the right-hand side of an O(ε2) boundary condition. Also, F

is the coefficient of A2Āei
√

3t0 on the right-hand side α3(t) of the O(ε3) boundary
condition (2.4). In particular, α3(t) has the form

α3(t) =

{(
∂A

∂t2
− χA

)
1

3
ei

√
3t0(2.34)

+A3e3i
√

3t0F3 + A2Āei
√

3t0F + CC

}
+

1

3

∂B

∂t2
.

(F3 does not pertain to this discussion.)
To examine the behavior of the front in the different parameter regimes, let us

consider the real equation in |A| corresponding to the complex equation (2.28), namely,

d|A|
dt2

= |A|(Re(χ) + |A|2Re(β)).(2.35)
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Perturbation amplitude |A| = 0 is a stationary solution for (2.35). Because
Re(χ) = 27/2 is greater than zero, trajectories with an initial point near the origin
in the complex A plane tend away from the origin. That is, in the absence of other
equilibria, the amplitude blows up in (slow) time for ν slightly below the critical value
1/3.

Equation (2.35) has a second equilibrium |A| =
√
−Re(χ)/Re(β) (a circle in the

complex-A plane) if Re(β) is negative. A simple stability analysis of (2.35) shows that
d|A|/dt2 < 0 outside of the circle, and d|A|/dt2 > 0 inside it. As a result, the limit
cycle in the complex-A plane is asymptotically stable in this setting. A supercritical
Hopf bifurcation occurs at ν = 1/3. The nonlinear solution develops oscillations of
magnitude O(ε) on the time scale O(ε−2). (See the expansion in (2.2).)

The quantity Re(β) is a quadratic function in σ with no roots at physical values of

σ. For all 0 < σ < 1, Re(β) is negative. The amplitude of the flat mode A(t2)e
i
√

3t0

approaches the limit cycle |A| =
√
−Re(χ)/Re(β). The nonlinear problem (1.8)–

(1.11) develops oscillations, as detailed below.

3. Numerical method. We integrate numerically the exact problem as given
by (1.8)–(1.11). In section 4, we compare the numerical solution with the asymptotics
derived above. As was pointed out in [7], numerical solutions of (1.8)–(1.11) are very
sensitive to the boundary condition (1.10). In order to obtain an alternative condition,
we integrate (1.8) with respect to η from 0 to ∞. Subsequently applying conditions
(1.9)–(1.11) results in the equation

d

dt

∫ ∞

0

udη = −νftK(V ).(3.1)

We use (3.1) to replace (1.10) and adopt the Crank–Nicolson method for the numerical
solution. The computation domain for η is [0, 10] with δt = δη = 0.025. This produces
a nonlinear system of m (= 401) equations. In particular, in reference to (2.2), we
introduce perturbation variables u∗ and f∗ defined by

u = e−η + εu∗; f = t + εf∗.(3.2)

Our discretization of condition (3.1) is

(∫ ∞

0

u∗dη
)∣∣∣tk+1

tk
= − ν

2ε
[(1 + εf∗

t (tk+1))K(1 + εf∗
t (tk+1))(3.3)

+ (1 + εf∗
t (tk))K(1 + εf∗

t (tk))](tk+1 − tk),

where the integral on the left-hand side of (3.3) can be approximated by a composite
trapezoidal rule.

We solve the nonlinear system of equations using Newton’s method. The Jacobian
matrix has the following sparse structure:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

# # 0 0 0 0 . . . 0
# # # # # # . . . #
# # # # 0 0 . . . 0
# 0 # # # 0 . . . 0
...

. . .
. . .

. . .
...

# 0 . . . 0 # # # 0
# 0 . . . 0 0 # # #
# 0 . . . 0 0 0 # #

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(3.4)
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where # denotes a nonzero element. The matrix can be efficiently inverted by using
Gaussian elimination with backward substitution.

The next section contains comparisons between numerical and asymptotic solu-
tions. For the asymptotic solution, we integrate the ordinary differential equation
(2.28) using a fourth-order Runge–Kutta method. As was pointed out in section 2,
the Landau–Stuart equation (2.28) has circular limit cycles in the complex-A plane
for all values of the kinetic parameter σ in the interval 0 < σ < 1.

4. Comparison between asymptotics and numerics. To fix the idea, we
first consider ε = 0.1. The value of ν remains at the marginally unstable value νc−ε2,
as introduced in (2.1), so ν ≈ 0.323̄. We show in this section that this choice of ε
corresponds to a mix of dynamics as σ varies. Subsequently, we both decrease and
increase ε and discuss the impact on the front behavior. For the remainder of this
paper, we take the initial condition A(0) = 0.1.

To start, take σ = 0.48 in the kinetic function (1.7). Figure 4.1 shows the nu-
merical (solid line) and asymptotic (dashed line) values of front speed perturbation
as a function of time t in the interval 0 ≤ t ≤ 60. Specifically, for the numerical and
asymptotic solutions we have graphed the quantities

vn = f∗
t and va = A(t2)e

i
√

3t0 +
1

2
B(t1, t2) + εφ2(t0, t1, t2),(4.1)

respectively, where f∗ is defined in (3.2), and va contains the first three terms in the
perturbation in (2.2).

Figure 4.1 shows that from t = 0 to about t = 30, the small front speed pertur-
bation is linearly unstable, and its amplitude grows exponentially in time. As this
amplitude becomes large, nonlinearity takes effect. At around t = 30, the front speed

0 10 20 30 40 50 60
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2
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Fig. 4.1. Velocity perturbation versus time: Comparison between numerical (solid line) and
asymptotic (dashed line); σ = 0.48, ε = 0.1, A(0) = 0.1 (ν ≈ νc − ε2 = 1/3 − (0.1)2 = 0.323̄).
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Fig. 4.2. Fourier amplitude of the numerical steady-state velocity perturbation; σ = 0.48,
ε = 0.1, A(0) = 0.1, 50 < t < 100 (ν ≈ νc − ε2 = 1/3 − (0.1)2 = 0.323̄).

perturbation has reached steady oscillation. The asymptotic solution accurately cap-
tures the period in both transient behavior for t = 0 to 30 and the long-time behavior
after t = 30. The amplitude and phase differ somewhat.

The weakly nonlinear approach describes well, by definition, marginally unstable
large-time behaviors when a single modulated temporal mode of frequency

√
3 cap-

tures the dynamics. (See (2.2).) We have illustrated such a case in Figure 4.1. We
then numerically calculated the velocity perturbation data {f∗

t (ti)} on the time in-
terval 50 < t < 100, using the parameter values as in Figure 4.1. The discrete Fourier
transform of the data reveals the dominance of one mode. (See Figure 4.2.)

However, the subsequent modes do contribute to the solution as well. The second
spike in Figure 4.2 is about 3/5 the height of the first, and the third is fully 1/2 the
height of the second. Contributions of higher-order modes may explain some quanti-
tative discrepancies between the numerical and asymptotic solutions in Figure 4.1.

Figure 4.3 summarizes the Fourier transformed velocity data for all physical val-
ues of σ (0 < σ < 1). For each σ value and each frequency, the color indicates
the corresponding amplitude, with the red end of the spectrum standing for larger
numbers than the violet end, as the legend to the right of the figure illustrates. For
roughly 0.3 < σ < 0.6, the figure shows the dominance of the lowest-order mode,
suggesting the appropriateness of the weakly nonlinear analysis in this range.

Notice, however, that at least four additional modes appear significant as well.
Nevertheless, for σ in the interval approximately (0.3, 0.6), the weakly nonlinear so-
lution captures the gross features of the oscillation. (See, for example, Figure 4.1.)

With our choice of ε = 0.1, Figure 4.3 shows that for σ greater than approximately
0.6, a single mode cannot be expected to capture the full dynamics of the solution.
For example, for σ = 0.85, the asymptotic solution certainly will not exhibit a velocity
perturbation with the very sharp peaks seen in the numerical solution in Figure 4.4.
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Fig. 4.3. Amplitudes corresponding to each frequency of the Fourier transformed velocity per-
turbation data for the Arrhenius kinetics parameter σ in the interval (0, 1); ε = 0.1, A(0) = 0.1,
35 < t < 85 (ν ≈ νc − ε2 = 1/3 − (0.1)2 = 0.323̄).
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Fig. 4.4. Velocity perturbation versus time: Numerical solution for σ = 0.85, ε = 0.1, A(0) =
0.1 (ν ≈ νc − ε2 = 1/3 − (0.1)2 = 0.323̄).

Further, Figure 4.3 shows that the Fourier spectrum has a complicated character
for σ sufficiently small, starting with the emergence of a period-doubling solution
for σ ≈ 0.25. Naturally, the asymptotic solution captures neither the period-doubling
solution nor the period-quadrupling computed for σ = 0.22 and σ = 0.21, respectively.
(Numerical solutions in Figures 4.5 and 4.6 illustrate the dynamics.) Figure 4.3 reflects
the breakdown of the numerical solution for σ less than approximately 0.15.
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Fig. 4.5. Velocity perturbation versus time: Period-doubling numerical solution for σ = 0.22,
ε = 0.1, A(0) = 0.1 (ν ≈ νc − ε2 = 1/3 − (0.1)2 = 0.323̄).
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Fig. 4.6. Velocity perturbation versus time: Period-quadrupling numerical solution for σ =
0.21, ε = 0.1, A(0) = 0.1 (ν ≈ νc − ε2 = 1/3 − (0.1)2 = 0.323̄).

The weakly nonlinear analysis of section 2 predicts periodic single-mode-dominant
solutions for all physical values of σ (0 < σ < 1) when ν = 1/3 − ε2 is sufficiently
close to the neutrally stable value νc = 1/3. From numerical simulation with ε = 0.1,
the interval in which a single mode dominates has been identified via Figure 4.3
as a subinterval of (0, 1), namely, (0.3, 0.6). The corresponding asymptotic solution
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Fig. 4.7. Amplitudes corresponding to each frequency of the Fourier transformed velocity per-
turbation data for the Arrhenius kinetics parameter σ in the interval (0, 1); ε = 0.06, A(0) = 0.1,
35 < t < 85 (ν ≈ νc − ε2 = 1/3 − (0.06)2).

captures the numerical solution accurately even for ε as large as 0.1 when the dynamics
associated with varying the parameter σ are not too complex. In particular, the
interval 0.3 < σ < 0.6 corresponds to good agreement. In what follows, we discuss
the effects of decreasing and increasing ε.

We have seen that the approximate interval of σ ≥ 0.6 in Figure 4.3 corresponds
to sharply spiking solutions with many Fourier modes contributing. This far right
interval moves farther and farther to the right as ε decreases. When ε drops to 0.06,
the interval of spiking solutions disappears.

As we decrease ε, graphs analogous to Figure 4.3 also show the period-doubling
region pushed farther and farther to the left along the σ axis. Similarly, the far left
code-failure region moves farther to the left. When ε drops to 0.07, the period-doubling
interval essentially disappears, and solutions can be computed even for extremely
small σ values.

Figure 4.7 shows that for ε = 0.06, one mode dominates strongly throughout the
entire interval 0 < σ < 1. The asymptotic and numerical solutions are consistent for
all physical values of σ when ν = 1/3 − ε2 if ε lies in the relatively small interval
0 < ε < 0.06.

Figure 4.7 also shows that only three higher-order modes appear to make slight
additional contributions, fewer than for any value of σ illustrated in Figure 4.3 for
ε = 0.1. Therefore, as expected, the weakly nonlinear and numerical solutions agree
more closely with ε reduced from 0.1 to 0.06. Figure 4.8 (ε = 0.06) shows good
agreement in period—as does Figure 4.1 when ε = 0.1. Also, the phase, amplitude,
and centerline agreement has improved considerably in Figure 4.8 for the decreased ε.
In Figure 4.8, the asymptotic solution oscillates between about −6 and 6, while the
numerical extends from −5 to 7, and their difference at the quasi-steady-state peaks
is about 1. In Figure 4.1 for ε = 0.1, the asymptotic solution also lies between −6
and 6, but the numerical solution varies between −4.5 to 7.9. The difference at the
peaks is about 2.

We have discussed the impact of reducing ε from the value 0.1 used in Figures 4.1–
4.6, which all pertain to the dynamics when ν = 1/3−(0.1)2. If ε increases beyond 0.1,
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Fig. 4.8. Velocity perturbation versus time: Comparison between numerical (solid line) and
asymptotic (dashed line), σ = 0.48, ε = 0.06, A(0) = 0.1 (ν ≈ νc − ε2 = 1/3 − (0.06)2 = 0.32973̄).

then the far right σ interval in Figure 4.3, corresponding to sharply spiking solutions,
has a left-hand endpoint that moves farther and farther to the left: The σ interval of
solutions with sharp peaks expands.

Also, as we increase ε, graphs analogous to Figure 4.3 show the period-doubling
region pushed farther and farther to the right along the σ axis, when compared with
Figure 4.3. In addition, the far left code-failure region has a right-hand endpoint that
moves farther and farther to the right: The σ interval on which the code breaks down
expands.

When ε grows to 0.12, the σ zone in which one mode dominates strongly becomes
extremely narrow. The asymptotic and numerical solutions agree well for σ in the
approximate interval (0.41, 0.42).

5. Conclusions and discussion. We have quantitatively compared a weakly
nonlinear analysis and direct numerical integration for a solid combustion model. By
definition, the weakly nonlinear approach is well suited to the study of marginally
unstable large-time behaviors when the modulated most-unstable mode captures the
dynamics.

For both the asymptotic and numerical methods, we examined nonuniform solu-
tions corresponding to ν fixed within ε2 of the stability boundary. When ε = 0.1, for
values of σ in the approximate interval (0.3, 0.6), the weakly nonlinear analysis pre-
dicted accurately the transient and steady-state behaviors and particularly the period
of oscillation. Beyond these special values of σ, the steady-state front propagation
exhibited complicated nonlinear behaviors. We took the Fourier transforms of com-
putational solutions to illustrate that higher-order modes play a significant role on σ
intervals outside of (0.3, 0.6) when ε = 0.1.

For larger values of ε, the σ interval of applicability of the weakly nonlinear
analysis shrinks. By contrast, when ε drops to approximately 0.06, the asymptotic
and numerical solutions agree well for all physical values of σ.

Specifically, as ε increases from 0.06 (Figure 4.7) to ε = 0.1 (Figure 4.3) and
beyond, a period-doubling sequence develops in σ. As ε gets larger (thereby pushing
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ν somewhat deeper into the instability region), the period-doubling bifurcation occurs
at larger and larger values of σ, and the subsequent bifurcations occur as σ decreases.
We note that this result, when viewed for a fixed value of σ, shows a period-doubling
sequence in ν (as ε increases), which concurs with the dynamical scenarios described
in the literature for experiments, as well as for simulations on reaction-diffusion and
free-interface models.

In future work, we will suggest a hybrid expansion-perturbation technique for cap-
turing more complex dynamics than those that have single-mode dominance. A more
flexible general expansion as in [22] will assume that the temperature and interface
position can be represented as a Fourier-like series that includes multiple temporal
modes varying in fast time.

Acknowledgments. The authors would like to express their gratitude to the ed-
itor Stephen B. Margolis and to the referees for very insightful comments and sugges-
tions. We also thank Yi Yang of the Institute of Applied Physics and Computational
Mathematics in Beijing for helpful recommendations.

REFERENCES

[1] A. Bayliss and B. J. Matkowsky, Two routes to chaos in condensed phase combustion, SIAM
J. Appl. Math., 50 (1990), pp. 437–459.

[2] A. F. Belyaev and L. D. Komkova, Dependence of burning velocity of thermites on pressure,
Zh. Fiz. Khim., 24 (1950), pp. 1302–1311.

[3] M. R. Booty, S. B. Margolis, and B. J. Matkowsky, Interaction of pulsating and spinning
waves in condensed phase combustion, SIAM J. Appl. Math., 46 (1986), pp. 801–843.

[4] I. Brailovsky and G. Sivashinsky, Chaotic dynamics in solid fuel combustion, Phys. D, 65
(1993), pp. 191–198.

[5] P. Dimitriou, J. Puszinski, and V. Hlavacek, On the dynamics of equations describing
gasless combustion, Combust. Sci. Tech., 68 (1989), pp. 101–111.

[6] M. L. Frankel, L. K. Gross, and V. Roytburd, Thermo-kinetically controlled pattern se-
lection, Interfaces Free Bound., 2 (2000), pp. 313–330.

[7] M. L. Frankel and V. Roytburd, Dynamical portrait of a model of thermal instability:
Cascades, chaos, reversed cascades, and infinite period bifurcations, Internat. J. Bifur.
Chaos Appl. Sci. Engrg., 4 (1994), pp. 579–593.

[8] M. Frankel, V. Roytburd, and G. Sivashinsky, A sequence of period doublings and chaotic
pulsations in a free boundary problem modeling thermal instabilities, SIAM J. Appl. Math,
54 (1994), pp. 1101–1112.

[9] M. L. Frankel, V. Roytburd, and G. Sivashinsky, Complex dynamics generated by a sharp
interface model of self-propagating high-temperature synthesis, Combust. Theory Model.,
2 (1998), pp. 1–18.

[10] M. Garbey, H. G. Kaper, G. K. Leaf, and B. J. Matkowsky, Quasi-periodic waves and
the transfer of stability in condensed-phase surface combustion, SIAM J. Appl. Math., 52
(1992), pp. 384–395.

[11] L. K. Gross, Weakly Nonlinear Dynamics of Interface Propagation, Ph.D. thesis, Rensselaer
Polytechnic Institute, Troy, NY, 1997.

[12] L. K. Gross, Weakly nonlinear dynamics of interface propagation, Stud. Appl. Math., 108
(2002), pp. 323–350.

[13] S. B. Margolis, Transition to nonsteady deflagration in gasless combustion, Progr. Energy
Combust. Sci., 17 (1991), pp. 135–162.

[14] B. J. Matkowsky and G. I. Sivashinsky, Propagation of a pulsating reaction front in solid
fuel combustion, SIAM J. Appl. Math., 35 (1978), pp. 465–478.

[15] A. G. Merzhanov, SHS processes: Combustion theory and practice, Arch. Combust., 1 (1981),
pp. 23–48.

[16] A. G. Merzhanov, A. K. Filonenko, and I. P. Borovinskaya, New phenomena in combus-
tion of condensed systems, Soviet Phys. Dokl., 208 (1973), pp. 892–894.

[17] Z. A. Munir and U. Anselmi-Tamburini, Self-propagating exothermic reactions: The synthe-
sis of high-temperature materials by combustion, Mat. Sci. Rep., 3 (1989), pp. 277–365.



ANALYSES OF DYNAMICS IN A SOLID COMBUSTION MODEL 1725

[18] K. G. Shkadinsky, B. I. Khaikin, and A. G. Merzhanov, Propagation of a pulsating exother-
mic reaction front in the condensed phase, Combust. Expl. Shock Waves, 7 (1971), pp. 15–
22.

[19] G. I. Sivashinsky, The structure of Bunsen flames, J. Chem. Phys., 62 (1975), pp. 638–643.
[20] A. Varma, A. S. Rogachev, A. S. Mukasyan, and S. Huang, Combustion synthesis of

advanced materials: Principles and applications, Adv. Chem. Engrg., 24 (1998), pp. 79–
226.

[21] J. Yu and L. K. Gross, The onset of linear instabilities in a solid combustion model,
Stud. Appl. Math., 107 (2001), pp. 81–101.

[22] J. Yu and Y. Yang, Evolution of small periodic disturbances into roll waves in channel flow
with internal dissipation, Stud. Appl. Math., 111 (2003), pp. 1–27.


