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Abstract. Propagation of a one-dimensional polymerization wave in a sandwich-type two-layer setting, where one

layer is reactive while the other layer consists of an inert material, is considered. Heat exchange is possible

between the two layers and thus the presence of the inert layer can significantly affect propagation of the polymer-

ization wave. The existence of multiple propagating fronts in the system for the same parameter values is demon-

strated. Linear stability analysis of the propagating fronts is performed, and conditions for oscillatory propagation

of the fronts are determined.
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1. Introduction

Frontal polymerization (FP) is a chemical process whereby monomer is converted to poly-

mer via a localized reaction zone. The front propagates as a result of the coupling of thermal

diffusion and exothermic Arrhenius reaction kinetics. Frontal polymerization was first discov-

ered experimentally in 1972 [1]. It is a simple technique which can be easily implemented on

a laboratory scale, and has been the subject of intense experimental and theoretical investiga-

tion in recent years (see, e.g. [2] and the references therein). The localized reaction zones and

rapid increase in temperature across the reaction wave are features that distinguish FP from

conventional polymerization methods. The interest in FP stems from its untapped potential

for the production of novel materials. Uniform composites, hydrogels, simultaneous interpen-

etrating networks, copolymers, polymer blends and functional gradient materials can be listed

among the many applications being considered for industrial production via FP.

We consider the steady propagation of a one-dimensional frontal polymerization (FP)

wave in a sandwich-type two-layer model. One layer is reactive. It contains a mixture of a

monomer and initiator. The other layer consists of an inert material. The two layers can

exchange heat and thus the presence of the inert layer can significantly affect propagation of

the polymerization wave through the reactive layer. Our mathematical model is a generaliza-

tion of a simpler model proposed in [3] in the context of combustion studies. A single sta-

tionary solution is found for the reactive layer in the presence of very thin inert layers. As

the thickness of the inert layer is increased (this corresponds to a change in the inter-layer

heat-exchange parameters), a saddle node bifurcation occurs and two new steady states are

formed. Another turning point is found as the thickness of the inert layer exceeds another

critical point, thereby reducing the system once more to a single stationary state. The exis-

tence of more than one stable basic solution creates the opportunity for unpredictable jumps

from one solution to the next. This form of hysteresis may be undesirable in manufacturing

processes, and must be properly understood before it can be controlled. We proceed to carry
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out a linear stability analysis of the uniformly propagating waves. For systems that exhibit

multiple steady states, linear stability analysis is a crucial first step for the accurate prediction

of the behavior of the system when subject to small perturbations from its basic state.

2. Mathematical model

We consider two adjacent thin layers. One layer is made up of an inert material, and the other

layer is a reactive mixture, which initially consists of monomer and initiator. There is ther-

mal contact between the two layers. The polymerization process occurring in the reactive layer

is exothermic, and therefore there is heat exchange between the layers as illustrated by Fig-

ure 1. In order to formulate a mathematical model, we first discuss the polymerization process

occurring in the reactive layer.

The polymerization process is the free-radical polymerization which involves a standard

sequence of chemical reactions [4, Chapter 3]. The process begins when the initiator decom-

poses, forming two radicals. Each radical can then combine with a monomer, initiating a

polymer chain. A polymer chain grows by combining with another monomer to form a longer

chain, and terminates by combining with a radical, either another growing chain or an initi-

ator radical. Thus, the kinetic scheme involves the decomposition step, initiation step, propa-

gation step and the termination step.

These kinetics equations can be simplified by using a steady-state assumption. Indeed, the

rate of production and consumption of radicals is much larger than the overall rate of change

of the radical concentration, which allows us to reduce the differential equations to algebraic

balances. This steady-state assumption has been justified in the context of a frontal polymer-

ization problem in [5], and it reduces the kinetics equations to

∂ I

∂t
+ kd I =0,

∂ M

∂t
+ ke

√
I M =0. (1, 2)

Here I and M are the concentrations of the initiator and the monomer, respectively, t is the

time, and kd and ke are the decomposition and the polymerization reaction rate parameters

which depend on the temperature Tr of the reactive layer. This dependence is given by the

Arrhenius law

kd = k0
d exp{−Ed/(RTr)}, ke = k0

e exp{−Ee/(RTr)},

where R is the gas constant, k0
d
, k0

e and Ed, Ee are the frequency factors and activation ener-

gies of the two reactions.
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Figure 1. Diagram showing system under study.
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Next, we need to formulate the energy balance in the reactive layer. Since the main heat

producing step is the propagation step [6], the heat equation has the form

φcrρr
∂Tr

∂t
=φλr

∂2Tr

∂x2
−φ�Hke

√
I M −α(Tr − Ti). (3)

Here λr is the thermal conductivity, �H is the enthalpy of the reaction, cr is the specific heat

and ρr is the mixture density. Next, Ti is the temperature of the inert layer, and φ is the ratio

of the thickness of the reactive layer to the total thickness of the two layers. The last term of

the heat-balance equation describes heat exchange between the two layers. The heat balance

in the inert layer is given by the equation

(1−φ)ciρi

∂Ti

∂t
= (1−φ)λi

∂2Ti

∂x2
−α(Ti − Tr). (4)

In a fixed coordinate frame (̃x), −∞< x̃ <∞, the front propagates along the x̃-axis in the

direction of decreasing x̃ . By introducing a moving coordinate system x = x̃ −ϕ(t) where ϕ is

the location of the reaction front at time t , we fix the front at x =0. Thus, dϕ(t)/dt <0 is the

velocity of the propagating front.

We rewrite the equations in the moving coordinate system and further simplify the

problem making use of the fact that the activation energies of the decomposition and poly-

merization reactions are large, which results in narrow reaction zones. In the limit of infinite

activation energy, the reaction zone shrinks to a moving surface, termed a front. In this case

the equations must be solved without the reaction term both ahead of and behind the reac-

tion front and matched at the reaction front by satisfying matching conditions. Thus, we solve

the reactionless equations

∂ I

∂t
−

dϕ

dt

∂ I

∂x
=0,

∂ M

∂t
−

dϕ

dt

∂ M

∂x
=0, (5, 6)

∂Tr

∂t
−

dϕ

dt

∂Tr

∂x
=κr

∂2Tr

∂x2
−αr(Tr − Ti) (7)

∂Ti

∂t
−

dϕ

dt

∂Ti

∂x
=κi

∂2Ti

∂x2
−αi(Ti − Tr) (8)

both ahead of (x <0) and behind (x >0) the front. Here

κr =
λr

crρr
, κi =

λi

ciρi

, αr =
α

crρrφ
, αi =

α

ciρi(1−φ)
.

Boundary conditions far ahead of the front describe the initial state of the layers:

x =−∞: Tr = Ti = T0, M = M0, I = I0

whereas far behind the front the final state is

x =+∞: Tr = Ti = Tf .

This last condition states that far behind the reaction front the reactive temperature goes to

a constant, and that because of the heat exchange between the layers the inert temperature

takes on the same value Tf ; this value Tf of the final temperature is however unknown, and

has to be determined in the course of solution of the problem.
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The matching conditions have the form

[Tr]=0, [Ti]=0, κr

[
∂Tr

∂x

]
=q(M0 − Mb)

dϕ

dt
, κi

[
∂Ti

∂x

]
=0, (9)

(
dϕ

dt

)2

= F (Tb) , Mb = M0 exp(− j0). (10)

The brackets denote a jump in a quantity across the front

[v]=v|x=0+ −v|x=0− .

Next, Tb and Mb are the temperature and monomer concentration at the front (i.e., at x =0),

respectively, q =−�H/(crρr) is the temperature increase per unit concentration of the reacted

monomer, and the function F is given by

F(Tb)=
κrk0

d
RT 2

b

2q M0 Ed

exp

(
j0 −

Ed

RTb

)(∫ j0

0

eη −1

η
dη

)−1

,

j0 ≡2
√

I0
k0

e

k0
d

exp
Ed − Ee

RTb

.

We remark that the above treatment of the polymerization problem assumes that both

decomposition and polymerization reactions occur in the same reaction zone. This is indeed

the case for typical values of the kinetic parameters of the polymerization processes. In gen-

eral, it does not have to be the case, i.e., different reactions can occur at different spatial loca-

tions as known from combustion literature [7–9]. Details of the derivation of the matching

conditions (9), (10) can be found, e.g., in [10].

3. Steady-state analysis

In this section we determine stationary solutions of the above problem, which correspond to

uniformly propagating one-dimensional traveling waves in the original problem. Our prelimi-

nary objective is to determine the effect that the inert layer has on the basic state of the prop-

agating reaction front.

We solve the following reactionless system ahead of (x <0) and behind (x >0) the front

d Î

dx
=0,

dM̂

dx
=0, (11, 12)

κr
d2T̂r

dx2
− û

dT̂r

dx
−αr(T̂r − T̂i)=0, κi

d2T̂i

dx2
− û

dT̂i

dx
−αi(T̂i − T̂r)=0 (13, 14)

subject to the boundary conditions

x =−∞: T̂r = T̂i = T0, M̂ = M0, Î = I0, (15)

x =+∞: T̂r = T̂i = T̂f , (16)

and the matching conditions

[
T̂r

]
=0,

[
T̂i

]
=0, κr

[
dT̂r

dx

]
=−qû(M0 − M̂b), κi

[
dT̂i

dx

]
=0, (17)
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û2 = F(T̂b), M̂b = M0 exp(− ĵ0), ĵ0 ≡2
√

I0
k0

e

k0
d

exp
Ed − Ee

RT̂b

. (18)

Here the quantities with the hats denote the stationary solution, and û is the speed of the

uniformly propagating wave. The stationary solution that satisfies (11)–(17) is given by

M̂(x)=
{

M0, x <0

M̂b, x >0
, Î (x)=

{
I0, x <0

0, x >0
, (19)

T̂r(x)=
{

T0 +q(M0 − M̂b){C2 exp(λ2x)+C3 exp(λ3x)}, x <0

T̂f +q(M0 − M̂b)C1 exp(λ1x), x >0
, (20)

T̂i(x)=
{

T0 +q(M0 − M̂b){B2 exp(λ2x)+ B3 exp(λ3x)}, x <0

T̂f +q(M0 − M̂b)B1 exp(λ1x), x >0
. (21)

Here λ1, λ2, and λ3 are the roots of the characteristic equation

κrκiλ
3 − û(κr +κi)λ

2 + (̂u2 −αrκi −αiκr)λ+ û(αr +αi)=0. (22)

It can be shown that this equation has three real roots for all αr > 0, αi > 0, κr > 0, κi > 0,

û > 0. Moreover, one of these roots is always negative (we denote it by λ1), while the other

two roots are always positive (we denote them by λ2 and λ3). It follows from the fact that

the cubic parabola on the left-hand side of (22) has a positive coefficient of the cubic term,

is positive at λ=0 and negative at λ= û/κr·max{1, κr/κi}, which can be verified directly. Next,

the final temperature T̂ f and the constants C1, C2, C3 and B1, B2, B3 are given by

T̂f = T0 +q(M0 − M̂b)
α0

i

α0
i
+κ0α0

r

, C1 =−
α0

r + (ν3 −1)(ν2 −1)

ν1(ν1 −ν3)(ν1 −ν2)
,

C2 =−
α0

r + (ν3 −1)(ν1 −1)

ν2(ν1 −ν2)(ν2 −ν3)
, C3 =

α0
r + (ν1 −1)(ν2 −1)

ν3(ν2 −ν3)(ν1 −ν3)
,

B j =

(
1−

ν2
j −ν j

α0
r

)
C j , j =1,2,3.

Here

κ0 =
κi

κr
, α0

r =
κr

û2
αr, α0

i =
κi

û2
αi,

and ν j ( j =1,2,3) are nondimensional eigenvalues λ j ( j =1,2,3),

ν j =
κr

û
λ j ,

which satisfy the equation

κ0ν3 − (1+κ0)ν2 + (1−α0
i /κ0 −α0

r κ0)ν +α0
r +α0

i /κ0 =0. (23)

The first conclusion concerning the structure of the solution can be drawn from these

preliminary equations. We observe that the constants C1 and B1 can be written in the form

C1 =−
α0

r

κ0

κ0ν1 −1

ν1(ν1 −1)(ν1 −ν2)(ν1 −ν3)
>0, B1 =−

α0
i

κ0α0
r

ν1 −1

κ0ν1 −1
C1 <0.
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Figure 2. Schematic of the temperature distribution in

the problem. Here the front is located at x = 0. The

temperature of the reactive layer Tr (labeled by (1))

has a maximum at the front, while the temperature of

the inert layer (labeled by (2)) is a monotone function.
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Figure 3. The graph of the function G(θ) in (30).

The signs immediately follow from the signs of ν1, ν2, and ν3. This means that Tr increases

as x goes from −∞ to zero (i.e., ahead of the front), and then decreases for x > 0, i.e.,

behind the front, while Ti is a monotonically increasing function everywhere as illustrated by

Figure 2.

In order to complete the solution of the steady-state problem we have to determine the

propagation velocity û and the temperature T̂b at the reaction front. The equations that relate

these two quantities are

û2 = F(T̂b) (24)

and

T̂b = T̂f +q(M0 − M̂b)C1, (25)

which follows from the definition that T̂b is the temperature at the front (x =0) and solution

(20). Nondimensionalizing Equations (24), (25) and using

M̂b = exp(− ĵ0) (26)

we obtain

û2 =u2
a(1+σθ)2 exp

(
Zeθ

1+σθ

)(
ĵ0e− ĵ0

∫ ĵ0

0

exp(η)−1

η
dη

)−1

, (27)

θ +1

1− e− ĵ0
=

α0
i

α0
i
+κ0α0

r

+
α0

r

κ0

1−κ0ν1

ν1(ν1 −1)(ν1 −ν2)(ν1 −ν3)
. (28)
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Here θ is the nondimensional temperature at the front,

θ =
T̂b − Ta

q M0
,

where Ta = T0 +q M0 is the adiabatic temperature in the reactive layer (i.e., in the case that no

heat exchange with the inert layer is allowed). Note that the right-hand side of (28) implicitly

depends on û through the constants α0
i

and α0
r as well as the nondimensional characteristic

roots ν. Next, the function ĵ0 in (27), (28), which is given by (18), and which can be under-

stood as a measure of incompleteness of the chemical conversion (see (26)), can be written in

the form

ĵ0 = j∗ exp

(
−

Zdeθ

1+σθ

)
, j∗ =2

√
I0

k0
e

k0
d

exp

(
Ed − Ee

RTa

)
.

Note that ĵ0 > j∗ and the ĵ0-dependent factor in (27) goes to one as ĵ0 →∞, while θ →0 in

this limit. As a result, û goes to the adiabatic propagation velocity ua that occurs in case of

complete conversion and is given by

u2
a =

κr RTa

q M0 Ed

√
I0k0

e exp

(
−

Ee

RTa

)
.

Finally,

σ =
q M0

Ta
, Ze =

Eeq M0

RT 2
a

, Zde =
(Ed − Ee)q M0

RT 2
a

,

with Ze, Zde being analogous to the Zeldovich number that is used in combustion theory.

We remark that Equation (27) is a meaningful way to represent the propagation velocity

as a function of the front temperature. It clearly shows the effect of different factors on the

velocity. Indeed, first it involves the adiabatic velocity ua that would occur if the chemical

conversion were complete (M̂b =0) and there was no heat exchange with the other layer. Next,

there is a θ -dependent factor that is responsible for the difference between the actual velocity

and the adiabatic velocity due to the presence of heat exchange (i.e., θ < 0 in the problem).

Finally, the ĵ0-dependent factor demonstrates the deviation of the velocity from the adiabatic

due to incomplete conversion.

To determine the nondimensional front temperature θ we need to solve Equation (28)

where the characteristic roots ν are solutions of (23) that depend on the parameters of the

problem as well as û, which is given in terms of θ by (27). Before we do it, let us consider

an instructive limiting case. Suppose αi =0 and αr >0. That means that the reactive layer can

lose heat to the inert layer, but there is no heat supply to the reactive layer from the inert

layer. In other words, this limiting case is similar to a heat-loss extinction problem that has

been studied both in combustion and frontal polymerization [11, 12] settings. In this case the

characteristic equation has very simple roots,

ν1 =
1

2

(
1−

√
1+4α0

r

)
, ν2 =

1

κ0
, ν3 =

1

2

(
1+

√
1+4α0

r

)
,

and (28) simplifies to

θ +1

1− e− ĵ0
=

1√
1+4α0

r

. (29)
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Figure 4. Dependence of the nondimensional front

temperature θ on the heat-transfer coefficient

α1 = αrκr/u2
a for Ze = 8, Zde = 6, κ0 = 1, ua = 1,

αi = 0 and different values of j∗. Curve 1 – j∗ = 20,

curve 2 – j∗ =1, curve 3 – j∗ =0·05.
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Figure 5. Dependence of the nondimensional front

temperature θ on the heat-transfer coefficient

α1 = αrκr/u2
a for Ze = 8, Zde = 6, κ0 = 1, ua = 1,

j∗ = 1 and different values of the heat-transfer coeffi-

cient α2 = αiκi/u2
a. Curve 1 – α2 = 0·001, curve 2 –

α2 =0·01, curve 3 – α2 =0·1.

In the limit j∗ �1 we have ĵ0 �1 so that (27) simplifies to

û2

u2
a

= (1+σθ)2 exp

(
Zeθ

1+σθ

)
,

while (29) simplifies to

û2

u2
a

=4
κrαr

u2
a

(1+ θ)2

1− (1+ θ)2
.

From the above two equations we obtain an equation for θ in the form

4
κrαr

u2
a

=
1− (1+ θ)2

(1+ θ)2
(1+σθ)2 exp

(
Zeθ

1+σθ

)
≡ G(θ). (30)

The right-hand side of this equation as a function of θ is shown in Figure 3 for Ze =8 and

σ =0·4. From this graph we see the critical phenomena in the dependence of θ on the heat-

exchange coefficient αr. For αr greater than a critical value there is only one, low-temperature

solution, while for αr below the critical value there are three solutions for the temperature.

This critical behavior is typical of the problem at hand not only in this limiting case but also

in general.

We next turn to the case αi =0, αr >0, but ĵ∗ is not necessarily large. The results are illus-

trated by Figure 4. We observe the S-shaped dependence of the front temperature on the heat

exchange coefficient αr that degenerates as ĵ∗ decreases. For even smaller ĵ∗, i.e., when con-

version is substantially incomplete, the solution reduces to a single-valued low-temperature

branch.
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Figure 6. Dependence of the nondimensional front

temperature θ on the heat-transfer coefficient

α1 = αrκr/u2
a for Ze = 8, Zde = 6, ua = 1, j∗ = 1,

α2 = 0·01 and different values of the thermal-diffusiv-

ity ratio κ0. Here κ0 = 2 (curve 1), κ0 = 1 (curve 2),

κ0 =0·5 (curve 3).
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Figure 7. Stability boundaries in the (Z , P)-plane for

κ0 = 1, α2 = αiκi/u2
a = 0·01 and varying heat exchange

coefficient α1 = αrκr/u2
a. From left to right: stability

boundary for α1 =0·1, α1 =0·05, and α1 =0·01. Stabil-

ity region is located to the left of the curve.

Next, we discuss the effect of heat influx from the inert layer into the reactive layer

(Figure 5). We again observe an S-shaped dependence that degenerates as αi increases because

the larger heat influx allows for the high-temperature branch to persist for any αr.

Figure 6 illustrates the effect of the ratio of the thermal diffusivities on the front temper-

ature. The main conclusion here is that increasing the thermal diffusivity of the reactive layer

relative to that of the inert layer facilitates high-temperature propagation and causes degen-

eration of the S-shaped behavior.

4. Linear stability analysis

We now turn to the stability analysis of the steady-state solution. We perturb the system

about the basic state

Tr(x, t)= T̂r(x)+ T̃r(x) exp(ωt), Ti(x, t)= T̂i(x)+ T̃i(x) exp(ωt), (31, 32)

dϕ

dt
=−û + φ̃ exp(ωt). (33)

Here ω is the growth rate of the perturbation. Substituting (31–33) in (7–8) we obtain differ-

ential equations for the perturbations as

κr T̃ ′′
r − ûT̃ ′

r −αr(T̃r − T̃i)−ωT̃r =−φ̃T̂ ′
r , (34)

κi T̃
′′
i − ûT̃ ′

i −αi(T̃i − T̃r)−ωT̃i =−φ̃T̂ ′
i , (35)

where a prime denotes the derivative with respect to x . These equations have to be solved

ahead of the front (x <0) and behind the front (x >0) subject to the boundary conditions
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x =−∞: T̃r = T̃i =0, (36)

x =∞: T̃r = T̃i =0 (37)

and linearized matching conditions at the front (x =0)

[
T̃r

]
=

[
T̃i

]
=0, (38)

κr

[
dT̃r

dx

]
=qû M̃b +qφ̃(M0 − M̂b),

[
dT̃i

dx

]
=0, (39)

−2ûφ̃ = F ′(T̂b)T̃b, M̃b = f ′(T̂b)T̃b. (40)

We observe that a particular solution of the system (34), (35) is determined as (φ̃T̂ ′
r /ω,

φ̃T̂ ′
i
/ω). Indeed, it can be verified by substituting the solution in (34), (35) and taking into

account that

κr T̂ ′′′
r − ûT̂ ′′

r −αr(T̂
′
r − T̂ ′

i )=0, κiT̂
′′′
i − ûT̂ ′′

i −αi(T̂
′
i − T̂ ′

r )=0,

as follows from (13), (14). Thus, the solution T̃r, T̃i can be represented in the form

T̃r =
φ̃T̂ ′

r

ω
+ T̃rh, T̃i =

φ̃T̂ ′
i

ω
+ T̃ih, (41)

where T̃rh, T̃ih is the homogeneous solution that is given by

T̃rh(x)

q(M0 − M̂b)
=

{
A2 exp(µ2ûx/κr)+ A3 exp(µ3ûx/κr), x <0

A0 exp(µ0ûx/κr)+ A1 exp(µ1ûx/κr), x >0
, (42)

T̃ih(x)

q(M0 − M̂b)
=

{
k2 A2 exp(µ2ûx/κr)+ k3 A3 exp(µ3ûx/κr), x <0

k0 A0 exp(µ0ûx/κr)+ k1 A1 exp(µ1ûx/κr), x >0
. (43)

Here An (n =0,1,2,3) are as yet undetermined amplitudes of the homogeneous solution, the

quantities kn are given by

kn =1−
µ2

n −µn −Ω

α0
r

,

where

Ω=
κr

û2
ω

is the nondimensional frequency of the perturbation, and µn are the roots of the character-

istic equation

κ0µ4 − (1+κ0)µ3 + (1−Ω(1+κ0)−α0
i /κ0 −α0

r κ0)µ2

+(2Ω+α0
r +α0

i /κ0)µ+Ω
2 +Ω(α0

r +α0
i /κ0)=0. (44)

In what follows we will be interested in the stability boundary that separates the regions in

the parameter space where the steady-state solution is stable from those where it is unstable.

At the stability boundary Ω = is, s ≥ 0. It can be shown that for such Ω the characteristic

equation has two roots with positive real part (we denote them by µ2 and µ3), and two roots

with negative real part (µ0 and µ1). This explains why the solution in (42), (43), which must

decay as x →±∞, contains two exponentials for x >0 and two exponentials for x <0.
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Next, we use the six matching conditions in (38–40) and the condition that T̃b is the per-

turbation of the reactive temperature at x = 0 to obtain a system of seven linear equations

for the unknown amplitudes A, φ̃ and the temperature and the monomer concentrations T̃b

and M̃b at the front. It is convenient first to translate the matching conditions (38–40) into

matching conditions for T̃rh and T̃ih. Substituting (41) in (38), (39) and using (40) we obtain

[T̃rh]=
φ̃

ω

qû

κr
(M0 − M̂b), [T̃ih]=0,

κr[T̃ ′
ih]=qφ̃(M0 − M̂b)

(
1+

û2

ωκr

)
+qû f ′(T̂b)

(
T̃rh(+0)+

φ̃

ω
T̂ ′

r (+0)

)
,

[T̃ ′
ih]=0, −2ûφ̃ = F ′(T̂b)

(
T̃rh(+0)+

φ̃

ω
T̂ ′

r (+0)

)
.

Substituting (42), (43) in the matching conditions we obtain the system of linear equations

A0 + A1 − A2 − A3 =
Ψ

Ω
,

A0µ0 + A1µ1 − A2µ2 − A3µ3 =
Ψ

Ω
(1+ P Q)+Ψ+ P(A0 + A1),

A0k0 + A1k1 − A2k2 − A3k3 =0, A0µ0k0 + A1µ1k1 − A2µ2k2 − A3µ3k3 =0,

−2Ψ= Z

(
A0 + A1 +

Ψ

Ω
Q

)

for A0, A1, A2, A3, and Ψ = φ̃/û. Here P , Q and Z are three groups of parameters that

characterize the steady-state solution,

P =q f ′(T̂b), Q =
κr T̂ ′

r (+0)

ûq(M0 − M̂b)
,

Z =q(M0 − M̂b)
F ′(T̂b)

F(T̂b)
=q(M0 − M̂b)

d log û2

dT̂b

.

Parameter Z demonstrates how sensitive the propagation velocity is to changes in the front

temperature. It is a standard stability parameter in most combustion and frontal polymer-

ization stability analyses. Parameter P is typical of most frontal polymerization problems.

It arises due to the fact that polymerization conversion is incomplete, and shows how this

incompleteness relates to the front temperature. Parameter Q is specific of problems in which

heat exchange with the environment occurs. Indeed, in the absence of such exchange the tem-

perature in the steady-state would be zero behind the front so Q would be zero. We remark

that using the steady-state solution (20) results in Q =ν1C1, i.e., it has the form

Q =−
α0

r + (ν3 −1)(ν2 −1)

(ν1 −ν3)(ν1 −ν2)
. (45)

The condition that the above system of linear equations has a nontrivial solution, i.e., the

determinant of the system is equal to zero, yields the dispersion relation

(µ2 −µ3)(µ0 −µ1)((H1 + H2 Q)Z + H3 P + H4)=0, (46)
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where the coefficients H1, H2, H3, H4 are functions of µ0, µ1, µ2, µ3, Ω and α0
r given by

H1 = (1+3Ω+Ω
2 +2α0

r +α0
r Ω)(µ2 +µ3 −µ0 −µ1)

+(α0
r +2Ω+1)(µ2

0 +µ2
1 −µ2

2 −µ2
3 +µ0µ1 −µ2µ3)

+(Ω+1)(µ2
2µ0 −µ2µ

2
0 +µ2

2µ1 −µ2µ
2
1 +µ2

3µ1 −µ3µ
2
1 +µ2

3µ0 −µ3µ
2
0)

+(Ω+1)(µ0µ2µ3 −µ0µ1µ2 +µ1µ2µ3 −µ0µ1µ3)

+µ2
2µ

2
3 +µ0µ1µ2µ3 −µ2µ

2
3µ0 +µ2µ3µ

2
0 −µ2µ

2
3µ1 +µ2µ3µ

2
1 −µ2

2µ3µ0 −µ2
2µ3µ1,

H2 = (µ3 −µ1)(µ3 −µ0)(µ2 −µ1)(µ2 −µ0), H4 =2ΩH2,

H3 =−2Ω{(1+Ω+α0
r )(µ2 +µ3 −µ0 −µ1)+µ2

0 +µ2
1 −µ2

2 −µ2
3 +µ0µ1 −µ2µ3

+µ2
2µ0 −µ2µ

2
0 +µ2

2µ1 −µ2µ
2
1 +µ2

3µ1 −µ3µ
2
1 +µ2

3µ0 −µ3µ
2
0

+µ0µ2µ3 −µ0µ1µ2 +µ1µ2µ3 −µ0µ1µ3}.

Note that Ω = 0 is always a solution of the dispersion relation due to translational invari-

ance of the problem. Indeed, substituting Ω= 0 in (46), taking into account that, for Ω= 0,

the characteristic roots µ become the characteristic roots ν (which can be seen by comparing

the two characteristic equations), i.e., µ0 =0, µ1 =ν1, µ2 =ν2, µ3 =ν3, and, finally, using (45)

reduces the left-hand side of the dispersion relation to

−ν1 Z(ν2 −ν3)(ν2 +ν3 −ν1){(α0
r +1)(ν1 +ν2 +ν3)

−(ν1ν2 +ν1ν3 +ν2ν3)+ν1ν2ν3 −2α0
r −1}.

This expression is equal to zero because the last factor is equal to zero, which can be checked

using the Vieta formulas for a cubic equation.

Monotone stability boundaries Ω=0 correspond to the turning points in the Figures 4–6

and result in the instability of the intermediate solution branches.

In order to determine the oscillatory stability boundary, we set Ω= is, (s >0), in the dis-

persion relation (46). Separating the real and the imaginary parts in the resulting equation,

we obtain two real equations, from which Z and P can be found as functions of s as

Z =
Im(H3 H4)

Im((H1 + H2 Q)H4)
, P =

Im(H4(H1 + H2 Q))

Im((H1 + H2 Q)H4)
,

where the bar denotes the complex conjugate. Thus, the above equations parametrically (with

s being the parameter) determine the stability boundaries in the (Z , P)-plane. Analysis of

these equations shows two striking results. First, the stability boundaries are mainly deter-

mined by the parameters Z and P . The boundaries are not sensitive to thermophysical

parameter values for the parameter ranges under study, with the sole exception of αr, the

heat-exchange parameter in the reactive layer. Second, the boundaries are given by almost

perfect straight lines. Figure 7 illustrates these results. Stability regions are located to the left

of the corresponding stability boundaries, and we observe that increasing αr reduces the sta-

bility region. This result is consistent with the stability analysis of nonadiabatic polymeriza-

tion fronts in [12], which showed that heat losses destabilize front propagation. We remark

that changing other thermophysical parameters, namely, κ0 and αi, has not resulted in any

noticeable changes in the stability boundaries.
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5. Conclusion

We have considered the steady propagation of a polymerization front in a sandwich-type two-

layer model. One layer initially contains reactants that can undergo polymerization. The other

layer consists of an inert material. Heat exchange is possible between the two layers and thus

the presence of the inert layer can significantly affect propagation of the polymerization wave.

The solution of the problem is not necessarily unique. We observe a turning point in the

graphical representation of the front temperature (see Figures 4–6) and beyond this point

the steady-state solution is no longer unique. There are three different uniformly propagating

waves that exist for the same parameter values. This is a source of hysteresis as the system can

jump between the upper and lower branches as the parameters are varied. Nonuniqueness of

solution is also observed in the case of a pure polymerization problem, i.e., without an addi-

tional layer [11]. However, in this case only up to two solutions can exist, one of which is

necessarily unstable, so that hysteresis cannot occur. We find that for sufficiently large heat-

exchange parameter in the reactive layer, the frontal polymerization reaction is quenched, or

at best, significantly inhibited. On the other hand, increasing the heat-exchange parameter in

the inert layer facilitates propagation of high-temperature fronts.

We proceeded to perform a linear stability analysis of the steady-state solutions. In the

case of multiple solutions, the intermediate branch is always unstable. The upper and lower

branches can be either stable or unstable depending on the parameter values. The same is

true in the case of a single steady-state solution. Our analysis indicated that the front sta-

bility is rather insensitive to the thermo-physical parameters of the problem, except for the

heat-exchange parameter in the reactive layer. Increasing this parameter has a significant de-

stabilizing effect. In general, the overall linear stability of the system is promoted by incom-

plete monomer conversion by the frontal polymerization process occurring within the reacting

layer. The same effect of incomplete monomer conversion has been observed in the case of a

pure polymerization problem [12].
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