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Abstract. A free-boundary model is used to describe frontal polymerization. Autoacceleration effects, such as the
gel effect, are accounted for in the formulation. Weakly nonlinear analysis is applied to investigate pulsating insta-
bilities in two dimensions. The analysis produces a pair of Landau equations that describe the evolution of the
linearly unstable modes. Autoacceleration influences the linear stability of the system as well as the onset and
stability of spinning and standing modes.
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1. Introduction

We consider the nonlinear dynamics of a free-radical polymerization front in two dimensions.
Frontal polymerization (FP) was first documented experimentally in [1]. It is the process by
which conversion from monomer to polymer occurs in a narrow region that propagates in
space. In the simplest case, a polymerization front can be generated in a test tube containing
a mixture of monomer and initiator by supplying heat to one end of the tube. The heat sub-
sequently decomposes the initiator into free radicals which trigger the highly exothermic pro-
cess of free-radical polymerization. The heat released by the reaction diffuses ahead, increases
the temperature there causing initiator decomposition, and the process repeats. The focus of
our attention will be the self-sustaining wave which travels through the tube as polymer mole-
cules are being formed. Uniformly propagating planar waves may become unstable as parame-
ters vary resulting in interesting nonlinear behaviors [2]. A clear understanding of the stability
of the propagating front is necessary to achieve both the desired uniformity and the overall
quality of the product. A complete linear stability analysis was first presented by Schult and
Volpert [3] and Spade and Volpert [4]. Weakly nonlinear analyses for the simplest model were
performed in [5, 6]. The focus of this paper is a weakly nonlinear analysis of a more com-
plex model that allows for autoacceleration of the polymerization reactions by the reaction
product. There may be various reasons for such autoacceleration. One possibility is the gel
effect. A simplified description of the gel effect is as follows. Theoretically, the polymeriza-
tion rate should decrease with a depletion of the available supply of the monomer and initia-
tor. Based on this fact alone the rate of conversion to the polymer state should decrease with
time. However, it has been experimentally verified that up to a certain stage, the overall poly-
merization rate may decrease, but beyond this point it increases. This anomaly is referred to
as the gel effect. An explanation for this phenomenon is the rapid growth of polymer chains,
which make the mixture more viscous so that longer chains can become entangled more easily.
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This decreases the termination rate thus increasing the overall polymerization rate. Another
example of autoacceleration occurs in case of polymerization of multi-functional monomers.
Kinetic measurements indicate that the polymerization rate increases with the degree of con-
version.

The paper is structured as follows. First, we discuss the chemical kinetics of the
free-radical polymerization process, and formulate a mathematical model based on mass and
heat balances in the system. Then we use several simplifications to reduce the problem
to a moving-free-boundary problem. We determine uniformly propagating one-dimensional
traveling waves, and perform their linear stability analysis. Weakly nonlinear stability analysis
results in a pair of Landau equations, the solutions of which are discussed depending on the
parameters of the problem.

2. Mathematical model

Most frontal polymerization studies involve free-radical polymerization kinetics. The free-
radical polymerization in question consists of a standard sequence of chemical reactions
[7, Chapter 3]. In particular, when one end of the tube is heated, the initiator Ĩ decomposes,
forming two radicals R̃. Each radical can then combine with a monomer, initiating a polymer
chain P̃ ∗

1 . Here P̃ ∗
1 is also a radical, and the subscript implies that it contains one monomer

unit. The proportion f of free radicals R̃ used in the initiation step is called an efficiency
factor and is initiator-dependent. A polymer chain P̃ ∗

n , n=1,2, . . . grows by combining with
another monomer to form the chain P̃ ∗

n+1, and terminates by combining with a radical, either
another growing chain P̃ ∗

m or an initiator radical R̃. The kinetic scheme that involves the
decomposition step, initiation step, propagation step and the two possible termination steps
can be summarized as

Ĩ
kd→f ×2R̃ (initiator decomposition)

R̃+ M̃ kp→ P̃ ∗
1 (chain initiation)

P̃ ∗
n + M̃ kp→ P̃ ∗

n+1 (chain growth, also known as chain propagation)

P̃ ∗
n + P̃ ∗

m

kt→ P̃ (polymer radical termination)

P̃ ∗
n + R̃ kt→ P̃ (primary radical termination)

Here Ĩ , R̃, M̃, P̃ represent initiator, primary radical, monomer and chemically unreac-
tive polymer molecule, respectively. Next, P̃ ∗

n , n = 1,2, . . . represents a polymer radical
with n monomer units, f is an efficiency factor, which is dependent on the initiator used
[7, pp. 232–240]. The reaction rate parameters denoted as k with a subscript depend on
temperature and have the form of Arrhenius exponentials

kd =k0
d exp{−Ed/(RgT )}, kp=k0

p exp{−Ep/(RgT )},
kt = k0

t exp{−Et/(RgT )},

where Rg and T are the gas constant and temperature, k0
d , k0

p, k0
t and Ed , Ep, Et are the

frequency factors and activation energies of decomposition, propagation and termination
reactions. The activation energies are assumed to be constant. The frequency factors, however,
may be functions of the monomer concentration M. Specifically, we assume that k0

p and k0
t

depend on M, while k0
d is constant. The dependence of k0

t on M models the gel effect; k0
t (M)

is an increasing function, which is equivalent to saying that the termination rate decreases
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with an increase in the degree of conversion. The dependence of k0
p on M models polymeri-

zation of multi-functional acrylates, with k0
p being a decreasing function of M, i.e., the poly-

merization rate increases with the degree of conversion.
The mass balance equations that govern the above kinetics scheme are

∂I

∂t
+kdI =0, (1a)

∂R

∂t
−2f kdI +kpRM+ktRP ∗ =0, (1b)

∂M

∂t
+kpRM+kpMP ∗ =0, (1c)

∂P ∗

∂t
−kpRM+ktRP ∗ +ktP ∗2 =0, (1d)

∂P

∂t
−ktRP ∗ −ktP ∗2 =0. (1e)

Here I,R,M,P are the concentrations in mol/L of the reacting species, t is the time, and P ∗

is the total concentration of polymer radicals P̃ ∗
n , n=1,2, . . . (We do not distinguish between

polymer radicals of different lengths). We remark that since Equation (1e) decouples from the
remaining equations we restrict ourselves to studying kinetic Equations (1a–1d).

The rate of production and consumption of radicals (both initiator and polymer radicals)
is more significant than the overall rate of change of the radical concentration, which allows
us to reduce the differential equations to algebraic balances. This is known as the steady-state
assumption (it has been justified in the context of a frontal polymerization problem in [8]),
and it reduces the equations (1b–1d) to

∂M

∂t
+ke

√
IM=0, (2)

where

ke=k0
e exp{−Ee/(RgT )}

is the effective reaction rate and

k0
e =k0

p

√

2f k0
d

k0
t

, Ee=Ep+ Ed −Et
2

.

Note that k0
e is a function of M. Since k0

p is a decreasing function of M, while k0
t is an

increasing function, the effective frequency factor k0
e is a decreasing function of M. Thus, ke

can be written in the form

ke=�(M)keff (T ), keff (T )=k0
eff exp{−Ee/(RgT )}.

Next, we need to formulate the energy balance in the system. Since the main heat produc-
ing step is the propagation step [9], the heat equation has the form

∂T

∂t
=κ∇2T −q ∂M

∂t
. (3)

Here κ is the thermal diffusivity, q = −�H/(cρ) is the rise in temperature induced per unit
concentration of reacted monomer, �H the enthalpy of the propagation reaction, c the
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specific heat and ρ the mixture density. Thus, the system of equations to be studied is given
by (1a), (2), (3). We remark that mass diffusion of the species is neglected compared to heat
diffusion because mass-diffusion coefficients in liquids are typically two orders of magnitude
smaller than thermal diffusivities.

The spatial region that we consider is a cylindrical shell of circumference L, in which the
polymerization wave propagates longitudinally. A two-dimensional shell is used rather than a
more realistic three-dimensional circular cylinder, because the 2D problem is simpler than its
3D counterpart, yet it still exhibits many of the same properties as the 3D problem. In a fixed
coordinate frame (̃x, y), −∞<x̃ <∞, 0<y<L, the front propagates along the x̃-axis in the
direction of decreasing x̃. By introducing a moving coordinate system x= x̃−ϕ(y, t) where ϕ
is the location of the reaction front at time t , we fix the front at x= 0. The dependent vari-
ables in our model are the temperature T (x, y, t), monomer concentration M(x, y, t), initiator
concentration I (x, y, t) and velocity of the propagating front ϕt ≡ ∂ϕ(y, t)/∂t <0. We rewrite
the equations in the moving coordinate system to obtain

∂I

∂t
−ϕt ∂I

∂x
+kd(T )I =0, (4)

∂M

∂t
−ϕt ∂M

∂x
+keff (T )�(M)

√
IM=0, (5)

∂T

∂t
−ϕt ∂T

∂x
=κ∇2T +qkeff (T )�(M)

√
IM=0. (6)

Here ∇2 is the Laplacian in the moving coordinate system defined as

∇2 = ∂2

∂y2
+
(

1+ϕ2
y

) ∂2

∂x2
−2ϕy

∂2

∂x∂y
−ϕyy ∂

∂x
. (7)

Boundary conditions far ahead of the front correspond to the initial state of the mixture, i.e.,

x=−∞ : T =T0, M=M0, I = I0, (8)

whereas far behind the front

x=+∞ :
∂T

∂x
=0. (9)

We utilize periodic boundary conditions in y for both T and ϕ.
After substituting J =√

I in (4), (5) and (6), we obtain

∂J

∂t
−ϕt ∂J

∂x
+Jk1(T )=0, (10)

∂M

∂t
−ϕt ∂M

∂x
+�(M)JMH(J0 −J )k2(T )=0, (11)

∂T

∂t
=κ∇2T +ϕt ∂T

∂x
+q�(M)JMH(J0 −J )k2(T ). (12)

Here

k1(T )=kd(T )/2=k01e−E1/(RgT ), k01 =k0
d/2, E1 =Ed,

k2(T )=keff (T )=k02e−E2/(RgT ), k02 =k0
eff , E2 =Ee
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and H(J0 −J ) is the step function

H(ξ)=
{

0, ξ ≤0
1, ξ >0

introduced to prevent the inaccuracy of the steady-state approximation which allows the
polymerization reaction to occur before initiator is decomposed, i.e., at J =J0.

Another simplification in frontal polymerization studies comes from combustion theory. In
combustion theory, non-dimensional parameters, such as RgTb/Ed , determine the structure of
the wave. Exploiting the fact that these parameters are small, one can replace the tempera-
ture-dependent, Arrhenius reaction rate constants with a simpler function where the integral
of this new function over the temperature domain is approximately the same as the original
function and the maximum heights of the two functions are equal. This approach is some-
what different from a formal asymptotic analysis in the limit of large activation energy, which
is traditional in the combustion theory [10]. The essence of the approach lies in the under-
standing that an appropriately non-dimensionalized Arrhenius exponential can be treated as
an approximation to the ‘one-sided’ delta-function of the temperature. Consequently, it can
be replaced by another function, which is also an approximation to the delta-function. This
approach is particularly useful in the case of multiple reaction schemes, i.e., when more
than one Arrhenius exponential occurs in the problem, since standard matched asymptotic
expansions rarely produce results uniformly valid with respect to multiple small parameters.
Employing this technique leads to approximate analytic solutions known to be very accurate.
Though frontal polymerization is much slower and significantly less exothermic than combus-
tion processes, parameters of this form also determine the wave structure for frontal poly-
merization and happen to be small. Therefore, this technique can been used to determine
approximate solutions for frontal polymerization. In fact, it has been used to study FP prob-
lems yielding accurate results [8, 11–14].

The simpler function Ki(T ) with which we replace the Arrhenius dependence of reaction
rate on temperature ki(T ) is

Ki(T )=
{

0, T <T ∗
i

Ai, T >T
∗
i

, (13)

where

Ai =ki(Tb)=k0i exp{−Ei/(RgTb)}
is the Arrhenius function for decomposition (i=1) and polymerization (i=2) reactions, eval-
uated at T =Tb, with k0i and Ei being the frequency factors and activation energies of both
processes. Here Tb is the characteristic temperature at the reaction zone. Since the reaction
zone is thin, the temperature does not significantly vary inside the reaction zone, and Tb,
which must be determined in the course of solution of the problem, can be referred to as the
reaction zone temperature. In the moving coordinate system Tb is the temperature at x= 0.
Next, T ∗

i = Tb(1 − εi) is the temperature at which the first and second reactions begin, and
εi=RgTb/Ei is a small dimensionless parameter related to the activation energy. We note that
the height of the chosen step function is equal to the maximum of the Arrhenius temperature-
dependent function. We have chosen the temperature T ∗

i in such a way that the step func-
tion Ki(T ) and the Arrhenius function ki(T ) have approximately equal integral values over
the interval T0<T <Tb. In particular, integrating the function in (13) gives

∫ Tb

T0

Ki(T )dT = RgT
2
b

Ei
ki(Tb),
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and it can be shown by Laplace’s method that

∫ Tb

T0

ki(T )dT ≈ RgT
2
b

Ei
ki(Tb).

We further simplify the problem making use of the fact that the activation energies of the
decomposition and polymerization reactions are large, which results in narrow reaction zones.
In the limit of infinite activation energy the reaction zone shrinks to a moving surface, termed
a front. In this case Equations (10–12) must be solved without the reaction term both ahead
of and behind the reaction front and matched at the reaction front by satisfying matching
conditions. Thus, we solve the reactionless equations

∂T

∂t
−ϕt ∂T

∂x
=κ∇2T ,

∂M

∂t
−ϕt ∂M

∂x
=0,

∂J

∂t
−ϕt ∂J

∂x
=0,

both ahead of (x <0,0<y<L) and behind (x >0,0<y<L) the front. Boundary conditions
far ahead of the front are

x=−∞ : T =T0, M=M0, J =J0

whereas far behind the front

x=+∞ : Tx =0.

We assume periodic boundary conditions in y for both T and ϕ. The matching conditions
that are derived in Appendix A have the form

[T ]=0, κ [Tx ]= q (M0 −Mb)ϕt

1+ϕ2
y

,
ϕ2
t

1+ϕ2
y

=F (Tb) , Mb=f (Tb) .

The brackets denote a jump in a quantity across the front

[v]=v (x=0+)−v (x=0−) ,

Tb and Mb are the temperature and monomer concentration at the front, respectively, and the
functions f and F are given by

F (Tb) ≡ κk01RgT
2
b (1−αM0 +αM0 exp(−j0))

qM0E1

× exp
(

j0 − E1

RgTb

)







∫ j0
0







eη−1

1+
(

αM0

1−αM0

)

eη−j0







1
η

dη







−1

f (Tb) = M0 exp (−j0)

(
1

1−αM0 +αM0 exp(−j0)

)

,

j0 = J0A2

A1
, A1 =k1(Tb), A2 =k2(Tb).

(14)
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The expressions for f and F have been derived for a specific form of the function �, namely,
�(M)= 1 − αM, where α > 0 is a parameter that characterizes the autoacceleration of the
reaction. We restrict ourselves to considering this simple linear dependence as we are only
interested in the qualitative effect of autoacceleration. One can think of this function as a
result of linearization of a more realistic dependence �.

We remark that kinetic parameter values typical of the polymerization processes are such
that both decomposition and polymerization reactions occur in the same reaction zone. In
general, it does not have to be the case, i.e., different reactions can occur at different spa-
tial locations as known from the combustion literature [15–17]. Below we determine stationary
solutions of the above problem, which correspond to uniformly propagating one-dimensional
traveling waves in the original problem, and then perform their linear and weakly nonlinear
stability analyses.

3. Basic solution and its stability

The stationary solution in 1D is

T̂ (x)=
{
T0 + (T̂b−T0) exp (̂ux/κ) , x <0
T̂b , x >0

,

M̂ (x)=
{
M0, x <0
M̂b , x >0

, Ĵ (x)=
{
J0, x <0
0, x >0

, ϕ̂t =−û>0,

where

T̂b =T0 +q(M0 − M̂b), M̂b =f (T̂b), û2 =F(T̂b).
To determine stability of the stationary solution we substitute

T = T̂ + δT̃ = T̂ (x)+ δ exp (ωt+ iky) θ (x) , (15)

M= M̂+ δM̃= M̂ (x)+ δ exp (ωt+ iky)m(x) , (16)

ϕ=−ût+ δϕ̃=−ût+ δ exp (ωt+ iky) (17)

in the equations and matching conditions and linearize in small δ. Here k = 2πj/L, j =
1,2, . . . is the wavenumber and ω is the temporal frequency of perturbations, and δ is a small
magnitude of perturbations.

This results in the dispersion relation

4�3 + (1+4s2 +4z1 − (z1 −P1)
2)�2 + z1(1+4s2 +P1)�+ s2z2

1 =0.

Here s= κk/û is the non-dimensional wavenumber and �= κω/û2 is the non-dimensional
frequency of oscillation. A detailed account of the linear stability analysis can be found in
[3, 5, 6]. We use the following non-dimensional parameters in the analysis

z1 = F ′(T̂b)(T̂b−T0)

F (T̂b)
≡2(T̂b−T0)

∂ log û

∂T̂b
, z2 = F ′′(T̂b)(T̂b−T0)

2

2F(T̂b)
,

z3 = F ′′′(T̂b)(T̂b−T0)
3

6F(T̂b)
, P1 =qf ′(T̂b)≡q ∂M̂b

∂T̂b
,

P2 = 1
2
q(T̂b−T0)f

′′(T̂b), P3 = 1
6
q(T̂b−T0)

2f ′′′(T̂b).
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Figure 1. Neutral stability curves z1cr (s) in the (s, z1)

plane for various values of P1. Above respective curves,
uniform propagation is unstable.
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Figure 2. Stability curves in the (j0, t0) plane for
s = 0·55 and α = 0·00,0·01,0·05 in descending
order. Parameter values are given in (18).

Instability occurs when a pair of complex conjugate eigenvalues crosses the imaginary axis as
the parameters vary. At the stability boundary

z1cr =4+2P1 −4s2
(

1+4s2 +P1

)−1

+2

((

2+P1 −2s2
(

1+4s2 +P1

)−1
)2

−P 2
1 +1+4s2

) 1
2

,

ω2
0 = (�m�)2 = 1

8
z1cr

(

1+4s2 +P1

)

.

The neutral stability curve in the (s, z1) plane has a minimum at s = sm > 0 for all P1 ≥ 0.
Neutral stability curves are shown in Figure 1 for physically meaningful values of P1. Note
that the polymerization wave becomes more stable as P1 increases.

To investigate the influence of the autoacceleration on linear stability of a model system, we set

(E1 −E2) /
(
RgqM0

)=19·70, E1/
(
RgqM0

)=52·95. (18)

These are typical values for MMA polymerization with 2,2′-azo-bis-isobutyronitrile (AIBN) as an
initiator [18]. Figure 2 shows the stability curves in the (20, j0) plane for s= 0·55 and for various
α-values. Here j0 is given by (14) and t0 =T0/(qM0) is the nondimensional initial temperature. An
increase in the value of α corresponds to increased autoacceleration. The linearly unstable region
corresponds to the area under the graphs. As depicted in Figure 2, autoacceleration was found to
promote linear stability of the system. This is not surprising because instability usually occurs with
slowly propagating waves, near extinction limits, while autoacceleration enhances propagation.
Similar results can be seen in Figure 3, which corresponds to

(E1 −E2)/(RgqM0)=22·65, E1/(RgqM0)=58·86, (19)

typical values for the initiator tert-butyl peroxide (TBPO) [8].

4. Weakly nonlinear analysis

We perform a nonlinear analysis that will allow us to obtain amplitude equations to charac-
terize the evolution of the unstable modes. Gross and Volpert [5] have studied the 1D case
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Figure 3. Stability curves in the (j0, t0) plane for s = 0·55 and α= 0·00,0·01,0·05 in descending order. Parameter
values are given in (19).

for loss of neutral stability at the wavenumber s=0. This corresponds to small values of the
tube circumference L. The analysis in this instance results in a single Landau–Stuart equation
which governs the weakly unstable modes. If, however, the tube circumference L is larger, loss
of stability will occur for some s > 0. We perform a weakly nonlinear stability analysis in
a neighborhood of the minimum of the neutral stability curve, i.e., for a fixed value of P1

we take s close to sm and z1 close to z1cr (s). The form of the bifurcating solution, e.g. the
number j of maxima of the temperature in the η-direction, which is determined by the wave-
number k, will therefore depend on the value of the shell circumference L according to the
equation

j = ûs

κ

L

2π
.

Our nonlinear analysis yields a coupled set of Landau amplitude equations.
We introduce time scales t0 = t, t1 = εt, t2 = ε2t and expand T , M, and ϕ as

T = T̂ + εT1 + ε2T2 + ε3T3 +· · · ,
M= M̂+ εM1 + ε2M2 + ε3M3 +· · · ,
ϕ=−ût0 + εϕ1 + ε2ϕ2 + ε3ϕ3 +· · ·

Also z1 = z1cr +µε2. To non-dimensionalize the above the following scales are used, where
j =0,1,2

ξ = û

κ
x, η= û

κ
y, ψ= û

κ
ϕ, ψj = û

κ
ϕj , tj = κ

û2
τj , θ = T

T̂b−T0
,

θb= Tb

T̂b−T0
, m= M

−M̂b+M0
, mb= Mb

−M̂b+M0
, mjb= Mjb

−M̂b+M0
.

Consequently, we have the following sequence of problems

∂θj

∂τ0
+ ∂θj

∂ξ
−
(

∂2θj

∂ξ2
+ ∂2θj

∂η2

)

−
(

∂ψj

∂τ0
+ ∂2ψj

∂η2

)

dθ̂
dξ

= Q̃j , (20)

[
θj
]=0,

[
∂θj

∂ξ

]

− ∂ψj

∂τ0
−mjb= R̃j , (21)
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2
∂ψj

∂τ0
+ z1crθjb= S̃j , mjb−P1θjb= T̃j , (22)

where Q̃j , R̃j , S̃j and T̃j are given in the Appendix B. The solution θj ,ψj satisfy periodic
boundary conditions in η and

∂θj

∂ξ

∣
∣
∣
∣
ξ=+∞

=0, θj
∣
∣
ξ=−∞ =0. (23)

The solvability condition for problem (20–23) is

∫ 2π
ω0

0

∫ L

0

(

v|ξ=0

(
P1

z1cr
S̃j + R̃j + T̃j

)

− 1
z1cr

S̃j

[
∂v

∂ξ

])

dηdτ0

=
∫ 2π

ω0

0

∫ L

0

∫ ∞

−∞
Q̃j vdτ0dηdξ,

where v is a solution of the adjoint problem given by

v± (ξ, η, τ0)=





exp
(

iω0τ0 ± isη+ 1
2

(−1+d) ξ
)

, ξ <0

exp
(

iω0τ0 ± isη+ 1
2

(−1−d) ξ
)

, ξ >0
,

v0 (ξ)=
{

1, ξ <0
exp(−ξ), ξ >0

and

d=
√

1+4�+4s2.

4.1. The O (ε) problem (j =1)

The solution of the O (ε) problem is

θ1 =
(

Aei(ω0τ0+sη)+Bei(ω0τ0−sη)
)

X1 (ξ)+CC,

ψ1 = Az1cr

2
ei(ω0τ0+sη)+ Bz1cr

2
ei(ω0τ0−sη)+CC+�,

where CC denotes the complex conjugate, �, A and B are functions of the slow times and

X1 (ξ)=





−
(

iω0 + 1
2z1cr

)

e
1
2 (1+d)ξ + 1

2z1creξ , ξ <0

−iω0e
1
2 (1−d)ξ , ξ >0

.

4.2. The O
(
ε2
)

problem (j =2)

Applying the solvability condition to the O
(
ε2
)

problem with v= v+ and v= v− shows that
A and B depend only on the slow time τ2. When v=v0 the solvability condition yields

∂�/∂τ1 = r0
(

|A|2 +|B|2
)
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with r0 as

r0 = z1cr

−2 (P1 +1)

{

−2ω2
0

((
P1 +1
z1cr

)(
1
4
z2

1cr − z2

)

+ 1
2
z1crP1 +P2

)

− s
2z2

1cr

2

(

1− P1 +1
z1cr

)

− z1crω
2
0

2

(

2+ 1−d
1+d + 1−d

1+d

)

− s
2z1cr iω0

2

(

1−d
1+d − 1−d

1+d

)

+ s2

2
z2

1cr

}

.

The solution for the O
(
ε2
)

problem is

θ2 =g0 (ξ)
(

|A|2 +|B|2
)

+{g1 (ξ) (A
2 exp(2i (ω0τ0 + sη))+B2 exp (2i (ω0τ0 − sη)))

+g2 (ξ)AB exp (2iω0τ0)+g3 (ξ)AB exp (2isη)+CC}

ψ2 =C0

(

|A|2 +|B|2
)

+{C1(A
2 exp (2i (ω0τ0 + sη))+B2 exp (2i (ω0τ0 − sη)))

+C2AB exp (2iω0τ0)+C3AB exp (2isη)+CC},

where the functions gj (ξ) are

g0 =
{
D01 exp (ξ)+D02 (exp (ξ)+ ξ exp (ξ))+ (D03 exp((1+d) ξ2 )+CC), ξ <0

a02 + (D04 exp((1−d) ξ2 )+CC), ξ >0

g1 =
{
a11 exp((1+d1)

ξ
2 )+D11 exp(ξ)+D13 exp((1+d) ξ2 ), ξ <0,

a12 exp((1−d1)
ξ
2 )+D14 exp((1−d) ξ2 ), ξ >0

g2 =
{
a21 exp((1+d2)

ξ
2 )+D21 exp(ξ)+D23 exp((1+d) ξ2 ), ξ <0,

a22 exp((1−d2)
ξ
2 )+D24 exp((1−d) ξ2 ), ξ >0

g3 =
{
a31 exp((1+d3)

ξ
2 )+D31 exp(ξ)+ (D33 exp((1+d) ξ2 )+CC), ξ <0,

a32 exp((1−d3)
ξ
2 )+ (D34 exp((1−d) ξ2 )+CC), ξ >0

Here

d1 =
√

1+8iω0 +16s2, d2 =
√

1+8iω0, d3 =
√

1+16s2

and the coefficients aij , Dij and Cj are given in Appendix B.

4.3. The O
(
ε3
)

problem (j =3)

The solvability conditions for the O
(
ε3
)

problem yield a coupled set of Landau equations

∂A

∂τ2
=µAχ +A2Aβ1 +ABBβ2,

∂B

∂τ2
=µBχ +B2Bβ1 +ABAβ2. (24)

The complex coefficients β1, β2 and χ are given in the Appendix B. Amplitude equations of
this form have been derived in many problems, e.g. in the context of combustion problems
[19, 20].
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5. Analysis of the amplitude equations

We let the amplitudes A and B of ψ1, which determines the shape of the front, be of the
form

A(τ2)=a (τ2) exp (iθaτ2) , B (τ2)=b (τ2) exp (iθbτ2) . (25)

Substituting (25) into (24) and separating real and imaginary parts results in

da
dτ2

=µχra+β1ra
3 +β2rab

2,
dθa
dτ2

=µχi +β1ia
2 +β2ib

2, (26)

db
dτ2

=µχrb+β1rb
3 +β2ra

2b,
dθb
dτ2

=µχi +β1ib
2 +β2ia

2. (27)

Here the subscripts r and i represent the real and imaginary parts of the respective coeffi-
cients. In order to determine the steady state solutions of (26), (27) which, in the origi-
nal problem, correspond to a superposition of waves traveling along the front, we consider
da/dτ2 =db/dτ2 =0. This leads to

a
(

µχr +β1ra
2 +β2rb

2
)

=0, b
(

µχr +β1rb
2 +β2ra

2
)

=0. (28)

There are four critical points

a1 =b1 =0, a2 =0, b2 =wt, a3 =wt, b3 =0, a4 =b4 =ws,

where

wt = (−µχr/β1r)
1/2, ws = (−µχr/(β1r +β2r))

1/2.

In the case of the first critical point the amplitudes A and B are identically equal to zero,
which corresponds to the uniformly propagating wave in the original problem. The second
and third critical points correspond to waves traveling along the front, which are right- and
left-traveling waves, respectively. The last critical point corresponds to a standing wave.

It can be shown that for all parameter values χr>0. Thus, from the expression for wt we
conclude that left- and right-traveling wave exist for µ>0 (the so-called supercritical bifurca-
tion) if β1r<0 and for µ<0 (the subcritical bifurcation) if β1r>0. In a similar way, the super-
critical bifurcation of standing waves occurs if β1r +β2r<0 and subcritical bifurcation occurs
if β1r +β2r>0. All the subcritical bifurcations are known to produce locally unstable regimes.
The supercritical bifurcation can lead to either stable or unstable solutions depending on the
parameter values. Specifically, the supercritical bifurcation of traveling waves (which occurs if
β1r<0) is stable if β2r<β1r and unstable otherwise. The supercritical bifurcation of standing
waves (which occurs if β1r +β2r<0) is stable if β2r>β1r and unstable otherwise.

Comissiong, Gross and Volpert [6] found that both traveling and standing waves result
from a supercritical bifurcation for certain initiators. The supercritical traveling wave solu-
tion was found to be the stable mode in most parameter regimes, as also observed by experi-
ment [2]. According to the initiator used in the reaction, supercritical standing waves became
the stable mode along the front for very specific initiator concentrations. Upon setting α=0,
we recovered the results of Comissiong, Gross and Volpert [6] for a two-dimensional system
without the autoacceleration effect. The quantities β1r and β2r were found to be always neg-
ative (for all parameter values investigated). We take parameter values (18), typical for the
initiator AIBN. With α = 0, for the most part β2r <β1r < 0, but for a very small range of
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Figure 4. Graphs of β1r − β2r vs. the non-dimensional
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for the initiator AIBN.
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Figure 5. Graphs of β1r − β2r vs. the
non-dimensional j0 = J0

A2
A1

for the initiator
TBPO.

Table 1. Regimes of existence and stability of equilibrium solutions for AIBN.

Initiator Existence Stability Detected
AIBN criteria

α=0 α=0·01 α=0·05

Subcrit. µ<0 Unstable No No No
TW β1r>0

Supercrit. µ>0 Stable iff Yes Yes Yes
TW β1r<0 β1r>β2r

Subcrit. µ<0 Unstable No No No
SW β1r +β2r>0

Supercrit. µ>0 Stable iff Yes Yes No
SW β1r +β2r<0 β2r>β1r

initiator concentration j0 we find that β1r<β2r< 0 (see Table 1 and Figure 4). Supercritical
traveling and standing waves are both detected, and for the most part the traveling waves are
stable while the standing waves are unstable, except for a very small range where supercritical
standing waves become the stable mode of propagation [6].

Upon repeating the investigation for α =0, it was found that upon increasing the autoac-
celeration effect (to α = 0·05), we find that β2r < β1r < 0 always. Hence previously detected
stable regimes of supercritical standing waves are eliminated, making the supercritical travel-
ing waves the only stable regime of existence.

We next take parameter values (19), typical for the initiator TBPO [8]. Once more, for
α=0, we were able to recover the results of Comissiong et al. [6], where supercritical standing
waves along the front were the stable mode for a very limited range of initiator concentration.
Upon increasing the autoacceleration effect (to α=0·07), supercritical standing waves were no
longer detected (as β2r<β1r<0 always), making supercritical traveling waves the only stable
regime of existence once more (see Table 2 and Figure 5). This agrees with the experimental
data in [2] where only traveling waves along the front have been observed.

We remark that the symmetry of the amplitude equations, i.e., the same coefficients in
front of similar terms of both equations, is due to symmetries in the original problem,
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Table 2. Regimes of existence and stability of equilibrium solutions for TBPO.

Initiator Existence Stability Detected
TBPO criteria

α=0 α=0·05 α=0·07

Subcrit. µ<0 Unstable No No No
TW β1r>0

Supercrit. µ>0 Stable iff Yes Yes Yes
TW β1r<0 β1r>β2r

Subcrit. µ<0 Unstable No No No
SW β1r +β2r>0

Supercrit. µ>0 Stable iff Yes Yes No
SW β1r +β2r<0 β2r>β1r

specifically, due to the translational and reflectional invariance of the governing equations in
the y-direction. In reality these symmetries may be broken, which will change the behavior of
the system in the immediate vicinity of the bifurcation point, but will not qualitatively affect
the regimes of propagation slightly away from the bifurcation point.

6. Conclusion

We have studied various regimes of propagation of a free-radical polymerization front that
bifurcate from a uniformly propagating wave when it loses stability as parameters of the
system are varied. We utilize a kinetic scheme which involves the decomposition of initiator
molecules to form free radicals, their reactions with monomer units for the formation of poly-
mer chains, and subsequent termination of the growing chains. In addition, we account for
autoacceleration of the polymerization process which can occur either due to the gel effect or
branching in multi-functional monomers. As autoacceleration is known to enhance polymer-
ization, we model it by appropriately modifying reaction rate constants. Using a variant of
large-activation-energy asymptotics, we reduce the problem to a free-boundary problem. We
first obtain the basic solutions in the form of uniformly propagating one-dimensional travel-
ing waves. Then we investigate the effect of autoacceleration on the linear and weakly non-
linear stability of the basic state.

We find that the autoacceleration enhances the linear stability of the propagating front, as
expected physically. Our weakly nonlinear analysis results in a pair of Landau equations (24),
which describes the evolution of the amplitudes of the linearly unstable modes. For the parameters
investigated, it has been found that both traveling and standing waves result from a supercritical
bifurcation. The traveling-wave solution is found to be the stable mode in most parameter regimes,
as observed by experiment. If the autoacceleration effect is absent or mild, then for some types and
amounts of the initiator used in the reaction, stable supercritical standing waves can occur. With
sufficiently large autoacceleration supercritical standing waves are unstable.
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Appendix A: Matching conditions

In order to derive the matching conditions we study the equations in the reaction zone.
The dominant balance in the reaction zone equations is that of the reaction term and the
highest spatial derivative (which could be formally derived by stretching the spatial scale in
the direction of propagation x)

−ϕt ∂J
∂x

+JA1 =0, (A.1)

−ϕt ∂M
∂x

+JM(1−αM)A2 =0, (A.2)

κ
(

1+ϕ2
y

) ∂2T

∂x2
+qJM(1−αM)A2 =0. (A.3)

Combining Equations (A.2) and (A.3) results in

κ
(

1+ϕ2
y

) ∂2T

∂x2
−qu∂M

∂x
=0. (A.4)

Integrating (A.4) from a point x in the reaction zone to the product end of it, where M=Mb

(the final concentration of the monomer), and Tx is essentially zero gives

κ
∂T

∂x
=−q(M−Mb)ϕt

1+ϕ2
y

. (A.5)

Furthermore, integrating (A.4) across the reaction zone gives

κ

[
∂T

∂x

]

= q(M0 −Mb)ϕt

1+ϕ2
y

, (A.6)

where the square brackets denote a jump in a quantity across the reaction zone

[v]=v |x=0+ −v|x=0− .

As the reaction zone is assumed to be very thin because of large activation energies, we can
assume continuity of temperature across the front

[T ]=0. (A.7)

From (A.1) and (A.2) we also have that

A2

A1

∂J

∂x
= 1
M(1−αM)

∂M

∂x
. (A.8)

Integrating (A.8) from x to the product end where M=Mb and J is essentially zero gives

M=
Mb exp

(
JA2
A1

)

1−αMb+αMb exp
(
JA2
A1

) . (A.9)

Evaluating (A.9) at the left end of the reaction zone where M=M0 and J =J0 yields

Mb= M0 exp (−j0)

1−αM0 +αM0 exp(−j0)
, j0 = J0A2

A1
. (A.10)
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Next, substituting (A.9) in (A.5) and using (A.10), we obtain

κ
∂T

∂x
=− qϕt

1+ϕ2
y

M0 exp(−j0)

1−αM0 +αM0 exp(−j0)

exp
(
JA2
A1

)

1+ αM0
1−αM0

exp
(
JA2
A1

− j0

) . (A.11)

Combining (A.11) with (A.1) yields

κ

ϕt

∂T

∂x
=− qϕt

1+ϕ2
y

M0 exp(−j0)

1−αM0 +αM0 exp(−j0)

1
JA1

exp
(
JA2
A1

)

1+ αM0
1−αM0

exp
(
JA2
A1

− j0

) .

Integrating this equation across the reaction zone, where T varies from T ∗
i to Tb, and J varies

from J0 to zero, yields the expression for F(Tb).

Appendix B: Coefficients

The right-hand side of Equations (20–22) are

Q̃1 =0, Q̃2 = ∂

∂τ1

(

ψ1
dθ̂
dξ

− θ1

)

+
(

∂ψ1

∂τ0
− ∂2ψ1

∂η2

)

∂θ1

∂ξ
+ ∂ψ1

∂η

∂

∂ξ

(
∂ψ1

∂η

dθ̂
dξ

−2
∂θ1

∂η

)

Q̃3 =
(

∂ψ2

∂τ0
− ∂2ψ2

∂η2

)

∂θ1

∂ξ
+ ∂

∂τ1

(

ψ2
dθ̂
dξ

− θ2

)

+ ∂

∂τ2

(

ψ1
dθ̂
dξ

− θ1

)

+∂ψ1

∂η

∂

∂ξ

(
∂ψ1

∂η

∂θ1

∂ξ
−2

∂θ2

∂η

)

+ ∂ψ1

∂τ1

∂θ1

∂ξ

+2
∂ψ2

∂η

∂

∂η

(

ψ1
d2θ̂

dξ2
− ∂θ1

∂ξ

)

+
(

∂ψ1

∂τ0
− ∂2ψ1

∂η2

)

∂θ2

∂ξ
,

R̃1 =0, R̃2 =
(
∂ψ1

∂η

)2

+ ∂ψ1

∂τ1
−m1b

∂ψ1

∂τ0
,

R̃3 =2
∂ψ1

∂η

∂ψ2

∂η
− ∂ψ1

∂τ0

(
∂ψ1

∂η

)2

+ ∂ψ2

∂τ1
+ ∂ψ1

∂τ2

−m1b

((
∂ψ1

∂η

)2

+ ∂ψ2

∂τ0
+ ∂ψ1

∂τ1

)

−m2b
∂ψ1

∂τ0
,

S̃1 =0, S̃2 =−2
∂ψ1

∂τ1
− z2 (θ1b)

2 −
(
∂ψ1

∂η

)2

+
(
∂ψ1

∂τ0

)2

,

S̃3 =−2
∂ψ2

∂τ1
−2

∂ψ1

∂τ2
+2

∂ψ1

∂τ0

(
∂ψ2

∂τ0
+ ∂ψ1

∂τ1

)

−2z2θ1bθ2b

−z3 (θ1b)
3 −µθ1b− z1crθ1b

(
∂ψ1

∂η

)2

−2
∂ψ1

∂η

∂ψ2

∂η
,

T̃1 =0, T̃2 =P2 (θ1b)
2 , T̃3 =2P2θ1bθ2b+P3 (θ1b)

3 .
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The coefficients aij , Dij and Ci appearing in the expressions for gi (ξ) are

D02 =−r0, D03 =
(

s2 + iω
)

z1cr (iω0 + z1cr/2)(1−d)−1,

D04 = z1cr

(

s2 + iω0

)

iω0(1+d)−1,

D01 =−(1+P1)
−1{2ω2

0P2 + s2z2
1cr/2+P1ω

2z1cr − ((1−d)D04/2+CC)
+((1+d)D03/2+CC)+P1 (D03 +CC)},

a02 =D01 +D03 +D03 −D04 −D04.

D13 =−(iω0 + z1cr/2) (1+d) z1cr/4, D14 =−iω0z1cr (1−d) /4,

a12 ={D14((d+d1) /2+P1)+D13 (d−d1) /2+ z2
1cr (1−d1)/16

−ω2
0P2 − s2z2

1cr/4−P1ω
2
0z1cr/2− (ω2

0z2 + s2z2
1cr/4

−z2
1crω

2
0/4− z1crD14)(4iω0)

−1(0·5−0·5d1 +2iω0)}{(1−d1)/2

−(1+ z1cr/4iω0)(1+d1)/2+ z1cr/4iω0 + z1cr/2−P1}−1

C1 ={ω2
0z2 + s2z2

1cr/4− z2
1crω

2
0/4− z1cra12 − z1crD14}(4iω0)

−1,

D11 =C1 + z2
1cr/8 , a11 =a12 +D14 −D11 −D13.

D23 =−0·5z1cr (1+d)(iω0 +0·5z1cr )=2D13,

D24 =−0·5z1cr iω0(1−d)=2D14,

a22 ={0·5(d−d2)D23 +D24{0·5(d+d2)+P1 − z1(4iω0)
−1(1+2iω0

−0·5(1+d2))}− z2
1cr (d2 −1)/8+0·5s2z2

1cr −P1z1ω
2
0 −2P2ω

2
0

+(1+2iω0 − (1+d2)/2)(ω
2
0(2z2 −0·5z1cr2)−0·5s2z2

1cr )(4iω0)
−1}/

{−d2 + z1cr (1+2iω0 −0·5(1+d2))/4iω0 −P1}
C2 = (−z1cra22 − z1crD24 − s2z2

1cr/2+2ω2
0z2 − z2

1crω
2
0/2)/4iω0,

D21 =C2 + z2
1cr/4, D33 =D13, D34 =D14,

a21 =a22 (1+ z1cr/4iω0)+D24 − z2
1cr/4−D23

−(−z1crD24 − s2z2
1cr/2+2ω2

0z2 − z2
1crω

2
0/2)/4iω0.

a32 = s2z1cr/2−2ω2
0z2/z1cr + z1crω

2
0/2−D34 −D34,
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a31 =0·5{−a32 ((d3 +1) /2+P1)− (D34 ((d+1) /2−P1)+CC)
+(D33 (1−d) /2+CC)+ s2z2

1cr/2−2ω2
0P2 −P1ω

2
0z1cr} (d3 −1) ,

C3 =a32 −a31 − z2
1cr/4−D33 −D33 +D34 +D34, D31 =C3 + z2

1cr/4.

The coefficients in the amplitude equations (24) are

χ = iω0 (P1 +d) {z1cr (P1 +d− z1cr/2+2iω0/d+ z1cr/(2d))}−1,

β1 = (Q5 −Q1 −Q3) {P1 +d− z1cr/2+2iω0/d+ z1cr/(2d)}−1,

β2 = (Q6 −Q2 −Q4) {P1 +d− z1cr/2+2iω0/d+ z1cr/2d}−1,

Q1 +Q3 =2iω0C1I3 + r0I2 −0·25z2
1cr s

2I5 +0·5z2
1cr s

2I4 −2z1cr s
2I7

+2z1cr s
2C1I1 +0·5z1cr (iω0 + s2)I6 +0·5z1cr (−iω0 + s2)I7,

Q2 +Q4 =2iω0C2I3 + r0I2 +0·5z2
1cr s

2I5 −2z1cr s
2I9 +2z1cr s

2C3I1

+0·5z1cr (iω0 + s2)(I6 + I9)+0·5z1cr (−iω0 + s2)I7,

I1 =2/(1+d),

I2 =−iω0/d+0·25z1cr (d−1){1/d−2/(1+d)},

I3 =2iω0/(d+d)+0·5z1cr (d−1){1/(d+d)−1/(1+d)},

I4 =−0·5iω0(d+1/d)+1/8z1cr (d−1)3/{d(d+1)}−0·25z1cr (d−1),

I5 = iω0(d−d)+0·25z1cr (1−d)+ iω0(d
2 +1)/(d+d)

+0·25z1cr (d−1)2{1/(d+1)−1/(d+d)},

I6 =0·5(d+1){2a02/(d+1)+D04/d+2D04/(d+d)}
−(d−1){D01/(d+1)−2D02/(d+1)2 +D03/(2d)+D03/(d+d)},

I7 =−0·5(d−1){2a11/(d+d1)+2D11/(d+1)+D13/d}
+0·5(d+1){2a12/(d+d1)+D14/d},

I8 =−0·5(d−1){2a21/(d+d1)+2D21/(d+1)+D23/d}
+0·5(d+1){2a22/(d+d1)+D24/d},
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I9 =0·5(d+1){2a32/(d+d3)+D34/d+2D34/(d+d)}
−(d−1){a31/(d+d3)+D31/(d+1)+D33/(2d)+D33/(d+d)},

Q5 = (P1 +d) /z1cr{iω0z1cr r0 +2iz2ω0g0 (0)+2ω2
0z1crC1

+3iω0z
3
1cr s

2/4−2s2z1crC1 +3iz3ω
3
0 −2iz2ω0g1 (0)}

−i
{

P1ω0(−8r0 +4z1crg0 (0)−4z1crg1 (0)

−6s2z2
1cr )+16iC1

(

P1ω
2
0 + s2z1cr

)

+3ω0z1cr

(

s2z2
1cr +4ω2

0P2

)}

/8

−2iP2ω0g0 (0)+2iP2ω0g1 (0)−3iP3ω
3
0,

Q6 = (P1 +d) /z1cr{2iω0z2 (g3 (0)−g2 (0)+g0 (0))+6iω3
0z3

+2ω2
0z1crC2 + iω0z1cr r0 −2s2z1crC3 − iω0z

3
1cr s

2/2}

−i
{

4ω0z1crP1

(

g0 (0)−g2 (0)+g3 (0)+ s2z1cr

)

+16is2z1crC3

−24ω3
0z1crP2 −2ω0z

3
1cr s

2 −8P1ω0r0 +16iP1ω
2
0C2

}

/8

+2iω0P2 (g2 (0)−g0 (0)−g3 (0))−6iP3ω
3
0.
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