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1. INTRODUCTION

Liquid crystalline phases can be observed in substances consisting of
molecules or groups of molecules that are anisotropic in shape. For

Ž .example, a typical nematic liquid crystal or, simply, nematic consists of
polarizable, rod-like molecules that tend to organize themselves in a
parallel fashion, developing a local orientational order. The direction of
molecular orientation can be influenced by external fields or by the
presence of surfaces.

Let � be a planar region occupied by a liquid crystal film of a thickness
2 d. Then the average orientation of the molecules near a point x � � �
� � Ž .�d, d can be described by introducing a unit vector n x , called the
director. A continuum theory of nematic liquid crystals is based on the

� � � �Oseen�Frank free energy functional EE n as introduced by Leslie 9 and
� � Ž .Ericksen 4, 5 . In the presence of a static magnetic field,

2 21� �EE n � K div n � K n � curl nŽ . Ž .H 1 22
� ��� �d , d

22� ��K n � curl n � � H � n dx, 1Ž . Ž .3 a m

where H is the magnetic field, and K , K , and K are the splay, twist,m 1 2 3
and bend elastic constants, respectively. The constant � represents thea
anisotropy of the magnetic susceptibility and is taken to be positive for our

Ž .system. The functional 1 can be written in a dimensionless form

2
� �E n � e x dxŽ .H2� � ��� �1, 1

2 2 2� M div n � MN n � curl nŽ . Ž .H2� � ��� �1, 1

2� 22� �� n � curl n � H � n dx, 2Ž . Ž .ž /2

where M � K �K and N � K �K , all lengths are in units of d, the field1 3 2 1
2H is in units of � K �2 d � , and the energy E is in units of � K d�4.' '3 a 3

1Note also that the region � is � rescaled by a factor of .
d
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Stable liquid crystal configurations are given by those configurations
that minimize the bulk energy E subject to the constraint

� �n x � 1, x � � � �1, 1 . 3Ž . Ž .

If we define the class of admissible director fields C by imposing the
Ž .appropriate boundary conditions and the constraint 3 , then a stable

director configuration n should satisfy

� � � �E n � inf E m . 4Ž .
m�C

ŽBy placing further restrictions on the admissible class C for example, by
.assuming n is independent of some of the spatial coordinates and solving

Ž .the Euler�Lagrange equations corresponding to 4 , one may obtain
Ž .candidates for minimizers of E. One of the complicating features of 2 is

that the type of minimizing configuration depends on the strength of the
applied magnetic field and the material characteristics of the liquid crystal.
Moreover, in certain cases, the corresponding structural changes cannot be
captured unless the admissible class C is extended to a wider class of

ˆfunctions C.
Consider, for example, a sufficiently anisotropic nematic, subjected to a

magnetic field. Liquid crystals of this type exhibit visible periodic spatial
� �patterns, 8, 10 , different from uniform director configurations, commonly

observed in weakly anisotropic materials. Therefore, a minimizer of E
over the set C of uniform configurations may have a higher energy than a

ˆminimizer of E over a larger set C, containing periodic director configura-
tions. As a consequence, the minimizer of E over C would be unstable

ˆunder certain perturbations from C. In the present paper, we investigate
how stability issues determine configurational changes in nematics. Our
analysis applies to materials with a bend geometry, i.e. the particular

Ž .combination of anchoring boundary conditions and direction of applied
magnetic field.

Ž .We consider a nematic film confined between two square plates Fig. 1 .
Suppose that the film is subject to strong anchoring conditions on the
plates so that

�n � e 5Ž .�� ��1, 14 1

and that the magnetic field H is parallel to the z-axis. Here e is a unit1
vector in the direction of the x-axis which is perpendicular to the plates



GOLOVATY ET AL.394

FIG. 1. Liquid crystal film confined between two plates with director field n perpendicu-
lar to the plates. The magnetic field H points in the z-direction.

and

� � y , z � R2 : �L�2 	 y 	 L�2, �L�2 	 z 	 L�2 ,� 4Ž .

where L � 1.
If the magnetic field is absent, then the director field is constant

Ž . � �throughout the crystal; that is, n x � e for every x � � � �1, 1 since1
Ž .this configuration minimizes the energy 2 when H � 0. In the presence of

the field, however, the molecules inside the crystal will favor orientation in
the direction of the field H, and the new minimizing configuration will
arise through the competition between elastic inner forces and surface
anchoring forces.

Ž � �.In the classical approach see, for example, Virga 13 , it is customary to
² :assume that the director field n � n , n , n is uniform in the y- and1 2 3

Ž .z-directions, while n � 0. Under these assumptions, 2 takes the form2

2 21 2 21 2 2 2 2� �E n � Mn � n � h n dx , 6Ž .H 1 x 3 x 3ž / ž /2 � ��1
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� �where h � H . To analyze this functional, we need the following Poincare’s´
� �inequality 12 : If � is a strip of width a, then the inequality

2a 22 � �u dx 	 grad u dx 7Ž .H Hž /�� �

1Ž .holds for e�ery u � H � such that u � 0 on the sides of the strip.
Since the liquid crystal is included in the strip of width 2, while
� Ž .n � 0, and the term involving n in 6 is strictly positive, wex��13 1

conclude that

� �E n 
 0 8Ž .

Ž .whenever h � 1. The equality in 8 can only hold when n � 0. Hence the3
initial configuration remains the unique global minimizer of the energy

Ž .functional 6 for every h � 1, and the presence of the field has no effect
on the crystal. In fact, h � 1 is a threshold in magnetic field strength, since
for h � 1 the nontrivial minimizer with a negative energy can be obtained

Ž .by solving the Euler�Lagrange equation associated with 6 .
� �In the case of small M, however, the experiments 8 have shown that a

different, nonuniform configuration, called the stripe phase, appears in a
sufficiently strong magnetic field. In this configuration, the director field is
still independent of the z-variable but is periodic in y.

A simple stability analysis shows the minimizer corresponding to the
stripe phase cannot bifurcate off the trivial solution branch. This situation
is in direct contrast with the splay Freedericksz geometry, studied by´

� � � �Lonberg and Meyer 10 , Cohen and Luskin 3 , and others. The main
difference between the two models is in the type of boundary
conditions�the splay geometry is characterized by a parallel, rather than
orthogonal, anchoring of the director to the plates. Although the stripe
phase is observed in both cases, the stability analysis is significantly less
complicated for the splay geometry, as the solution branch corresponding
to the periodic configuration bifurcates from the trivial solution branch.

The stability of the uniform Freedericksz solution for the bend geometry´
� �was studied numerically by Allender et al. in 2 . They established the

ˆexistence of a new threshold value h, slightly above the classical threshold
h � 1, such that the periodic perturbations of the uniform solution have a

ˆlower energy whenever the magnetic field exceeds h. Further numerical
� � � �simulations were performed by Gartland et al. 7 , Gartland 6 , and

� �Allender and Gartland 1 who showed that the stripe phase exists even for
h � 1.
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Here we present an analytical verification of the global instability of the
trivial solution branch for h � 1 and M small, confirming the computa-

� �tional result of 6 . Our method does not require numerical calculations
� �and is significantly simpler than the procedure in 2 . In particular, we

show that it is sufficient to study the stability of solutions in the case when
h � 1 and M � 0. Then the stability results can be extended to nonzero M

Ž .and h � 1 by the continuity of 2 in M and h.

2. STABILITY ANALYSIS

The stripe phase can be observed when the elastic constants of the
liquid crystal are sufficiently anisotropic, in particular, when M is small.
As is noted above, we will assume throughout this section that M � 0.
Although this assumption appears to be physically unreasonable, the
corresponding analysis can be easily extended to M � 0 by using a simple

� �continuity argument. Following 6 we set

� n
� 0.

� z

Ž .Then using 6 we obtain that

21 21 2 2 2� �E n � n � h n dx .H 3 x 3ž /2 ��1

The Euler�Lagrange equation corresponding to the functional E is

22
2n � h n � 0, 9Ž .3 x x 3ž /�

where n is subject to the boundary conditions3

�n � 0. 10Ž .x��13

Ž . Ž .Now let h � 1. The general solution of 9 , 10 is given by

� x
n x � 	 cos , 11Ž . Ž .3 ž /2

� � Ž .where 	 � �1, 1 . By Poincare’s inequality 7 , the energy E correspond-´
Ž .ing to 11 is nonnegative for every 	 and is, in fact, equal to zero. Our

goal is to show that there exist two-dimensional perturbations of the
Ž .primary states 11 such that the energy of the perturbed director configu-

ration is negative.
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Assume for simplicity that 	 � 1:

� x
n x � cos . 12Ž . Ž .3 ž /2

To simplify some of our computations we introduce the spherical coordi-
nates

n � cos 
 cos � , n � cos 
 sin � , n � sin 
 ,1 2 3

Ž .as shown on Fig. 1. Then we can express the solution 12 by

�
� �
 x � 1 � x , � � 0. 13Ž . Ž . Ž .

2

Ž .Next consider the perturbations of the primary state 13 ,

�
� �
 x , y � 1 � x � � 
 x , y ,Ž . Ž . Ž .

2

� x , y � � � x , y ,Ž . Ž .

where � is small. We shall require that �, 
, and their gradients be
� � � �square integrable over the region R � �1, 1 � �L�2, L�2 . In seeking

a configuration with negative energy, we will assume that

L
� Both � and 
 are periodic in y with a period 2 l and � N.

2 l

� Within each period, the field � is odd with respect to both variables
x and y.

� Within each period, the field 
 is even with respect to both
variables x and y.

Ž .The same properties of minimizers of 2 are suggested by numerical
Ž .simulations Fig. 2 .

Under these assumptions, one can easily show that

2L 21 l 2 2� �� �E n � n � curl n � n dy dx ,H H 3ž /l �0 0

and in the spherical representation

L 1 l 2 2 2 4 2� �E n � A cos 
 � B cos 
 � sin 
 dy dx , 14Ž . Ž .H Hl 0 0
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FIG. 2. A single period of the stripe phase as viewed from the direction of the magnetic
field. The director field is periodic in the vertical direction and the glass plates bound the

� �crystal from the right and from the left 6 .

where

2
A � 
 cos � � 
 sin � ,Ž .x y�

2
B � � cos � � � sin � .Ž .x y�

Ž .In addition, the symmetry of � and 
, along with 5 , yields the
boundary conditions

� � �
 � 0, � � � � 0. 15Ž .x�1 x�0, 1 y�0, l

Ž .Expanding 14 in powers of � we obtain

L 1 l 2 2� �E n � e x � � e x , y � � e x , y dy dx � o � , 16Ž . Ž . Ž . Ž . Ž .H H 0 1 2l 0 0
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where

� x � x
2 2e x � sin � cos ,Ž .0 ž / ž /2 2

4 � x
2e x , y � 
 x , y sin ,Ž . Ž .1 ž /ž /� 2 x

24 � x �
2 2 2e x , y � sin 
 x , y � � x , yŽ . Ž . Ž .2 x2 ž / ž /½ 2 2� 17Ž .

�� � x , y 
 x , yŽ . Ž .y

� x �
2 4 2�� x , y sin � 
 x , y sin � x .Ž . Ž . Ž .Ž .x xž / 52 2

Ž . Ž . Ž .By integrating e x and e x, y in 16 and using boundary conditions0 1
Ž . � �15 , the functional E n can be reduced to

2 24L� � � x1 l 2 2 2� �E n � 
 � � � � �
 sinH H x y2 ž / ž /ž /2 2� l 0 0

� x
2 4 2�� sin dy dx � o � . 18Ž . Ž .x ž /2

Suppose that

y y
� x , y � � x , , 
 x , y � 
 x , ,Ž . Ž .0 0ž / ž /l l
y Ž .and set u � . Then 18 can be rewritten as
l

2 24L� � � � x1 1 2 2 2� �E n � 
 � � � � 
 sinH H 0 x 0 0 0 u2 ž / ž /ž /2 l 2� 0 0

� x
2 4 2�� sin du dx � o � .Ž .0 x ž /2

Ž . Ž .This integral can be made negative if � x, u � 0 and 
 x, u � 0 for0 0 u
Ž . Ž . Ž .every x, u � 0, 1 � 0, 1 and if l is sufficiently small. For example,

� x , u � �sin � x sin � u ,Ž . Ž . Ž .0

19Ž .1

 x , u � � 1 � cos � x cos � u .Ž . Ž . Ž .Ž .0 2
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Ž .From this we conclude that when M � 0 and h � 1, the primary state 13
is unstable under two-dimensional perturbations, and there exist director

Ž .configurations with negative energy. Further, since the functional 2 is
linear with respect to both M and h, there exist M � 0, director field n,

� �and h � 1 such that E n � 0. Under these conditions the trivial configu-
Ž .ration is only metastable, since the energy of the solution 
 x, y �

Ž .� x, y � 0 is equal to zero. Therefore, for small M, the critical value of h
is below the classical threshold value h � 1. In addition, the smallness of l
is consistent with the numerical observations that indicate that the period
of the stripes tends to zero as M � 0.

To verify our conclusions we used particular perturbations of the direc-
Ž . � � Ž .tor field 13 to compute the full energy E n in 2 . Assuming that

Ž . Ž . Ž . ² :� x, u and 
 x, u are given by 19 and n � n , n , n , we have that0 0 1 2 3

� y y
� �n x , y � cos 1 � x � � 
 x , cos � � x , ,Ž . Ž .1 0 0ž / ž /ž / ž /2 l l

� y y
� �n x , y � cos 1 � x � � 
 x , sin � � x , ,Ž . Ž .2 0 0ž / ž /ž / ž /2 l l

20Ž .

� y
� �n x , y � sin 1 � x � � 
 x , .Ž . Ž .3 0 ž /ž /2 l

� �The stripes were observed by Gooden et al. 8 in nematics when two
elastic constants, K and K , diverge, while the third, K , remains bounded2 3 1
as the temperature of the material approaches the temperature of the
nematic-to-smectic-A transition. In accordance with the rates of conver-

� �gence for K , K , and K determined in 8 , both M and MN are small,1 2 3
while N is large near the transition point. Hence we require that our
choice of the dimensionless elastic constants conforms to convergence

� � Ž .results of 8 , but only qualitatively since the perturbation 20 might be
quite far from the minimizing configuration. In particular, it is not unrea-
sonable to set M � 0.0001 and N � 10.

Assuming in addition that l � 0.007, � � 0.05, and h � 0.99, we used a
� �simple quadrature rule as well as the Maple computer algebra system 11

� �to evaluate E n . In both cases we found that the energy is indeed
� �negative with E n � �0.076. In Maple, this result can be illustrated by

Ž . Ž .comparing the graphs of the energy density e x, y in 2 , for the unper-
Ž . Ž .turbed 13 , and perturbed 20 director configurations. The corresponding

surfaces are shown on Fig. 3. Also, Fig. 4 demonstrates the distribution of
Ž .the director within a single period of the director field 20 . Although not a

minimizer of the energy, this configuration resembles the periodic director
Ž .field for a numerically obtained minimizer of 2 , shown on Fig. 2.
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Ž .FIG. 3. The energy density e x, y for a single period of the stripe phase corresponding to
Ž . Ž . Ž . Ž .a the Freedericksz solution 13 and positive total energy, b the perturbation 20 of the´
Freedericksz solution and negative total energy.´
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Ž .FIG. 4. A single period of a perturbation 20 of the Freedericksz solution as viewed from´
the direction of the magnetic field.

Thus, in a bend geometry nematic, if the splay and twist elastic constants
are sufficiently small compared to bend, there is a transition from the

Ž .trivial to the periodic director configuration or ‘‘stripe phase’’ . This
transition occurs at a field strength below the classical threshold for the
uniform Freedericksz transition.´
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