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Abstract

In free-radical polymerization, a monomer-initiator mixture is converted into a polymer. Depending on initial and boundary
conditions, free-radical polymerization can occur either in a bulk mode (BP) or in a frontal mode (FP) via a propagating self-
sustaining reaction front. The main goal of this paper is to study the role that bulk polymerization plays in frontal polymerization
processes for various one-step kinetics models.

We use numerical simulations to study the influence of reaction kinetics on one-dimensional frontal polymerization. We show
that the long-time behavior of systems modeled with discontinuous distributed kinetics (e.g. step-function kinetics) significantly
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eparts from the long-time behavior of systems modeled with Arrhenius kinetics. The difference is due to slow BP in t
ixture of reagents, which influences both the speed and the long-time stability of the reaction front.
Further, we show that for distributed kinetics a “true” FP is only possible for a steadily propagating, traveling-wave

ront. When a front propagates in a pulsating mode, we demonstrate the existence of pockets of unreacted monomer
ront. These pockets evolve via a bulk polymerization mechanism.

A mathematical model of one-step free-radical frontal polymerization is identical to the model of gasless combustion
eactions play a role in the latter context, as well. However, fronts propagate much faster in combustion than in polym
nd slow bulk reactions in regions ahead of the burning front can generally be neglected.
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1. Introduction

1.1. Physical background

We study the interplay between two different modes
of free-radical polymerization—frontal polymeriza-
tion (FP) via a propagating, localized reaction zone
[1,2] and bulk polymerization (BP) within a distributed
reaction zone. While BP has been widely used in man-
ufacturing of plastics, FP remains at the experimental
stage. FP has an advantage over BP in the speed of
conversion and has a number of potential uses such
as filling or sealing of structural cavities, rapid cur-
ing of polymers, and uniform curing of thick polymers
[3].

Free-radical polymerization is the process of con-
verting a monomer-initiator mixture into a polymer,
which occurs when a thermally unstable initiator is
mixed with a monomer. The initiator molecules de-
compose into radicals that combine with the monomer
to form reactive polymer chains (polymer radicals) that
continue to grow by incorporating additional molecules
of the monomer. The growth may terminate through a
reaction with either another reactive polymer chain or
an initiator radical. The polymer molecule becomes in-
active following the termination step.

The polymerization reactions are exothermic and
are modeled with temperature-dependent (Arrhenius)
kinetics. In the bulk mode, the temperature of the test
tube is raised uniformly throughout the tube, accelerat-
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high enough to generate and initially sustain the reac-
tion front. Further, the reaction rate must be extremely
small at the initial (ambient) temperature but very large
at the front temperature. The high reaction rate coupled
with the exothermicity of the reaction must be sufficient
to overcome heat losses into the reactants and product
zones.

The mode of conversion may also depend on the
physical state of both reagents and the final product.
In particular, the monomer can be a liquid and the
polymer can be either a solid or a very viscous liq-
uid [3]. To minimize flow transport in the system, the
viscosity of the monomer can be increased by adding
to the system inactive components such as silica gel
[3]. Here we will assume that both reagents and the
final product are viscous enough for us not to be con-
cerned with convective effects and bubble formation
that affect the polymerization dynamics in the liquid
phase.

A more extensively studied chemical process with
a similar reaction mechanism is self-propagating high-
temperature synthesis (SHS)—a combustion process
characterized by a heat release large enough to prop-
agate a combustion front through a powder compact,
while consuming the reactant powders[4,5]. The sim-
plest models and front propagation mechanisms for FP
and SHS are essentially the same, except for the mag-
nitudes of the model parameters. These differences in
parameter values may lead to the differences in ob-
servable long-time behavior between systems under-
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nside the tube at the same time. In the frontal m
he reactions are initiated locally and then propa
hrough the tube via the thin, self-sustaining reac
one determined by the coupling between the the
iffusion and the reaction kinetics.

A typical FP experiment can be performed in a g
ube filled with reagents. An external heat source, w
pplied at the top of the tube, initiates a descen

ront that appears as a moving region of polymer
ation. Depending on the choice of reactants and

onditions of the experiment, the front either may
ay not propagate with a constant speed. Various
niform propagation scenarios can occur, even if

ront always remains flat—the situation considere
his paper.

Several conditions are necessary for the existen
he frontal mode. First, the ignition temperature mus
oing SHS and FP, as will be discussed later in
aper.

Several different zones are usually distinguis
n materials undergoing SHS: reactants zone, he
one where chemical reactions have not yet been
ted, a reaction zone, and a final product zone tha
o influence on the velocity of the combustion wa
similar zone structure characterizes mixtures un

oing frontal polymerization.
Both steady and unsteady combustion wave pr

ation have been observed in SHS. The wave vel
n SHS is of order 10−3 to 10−2 m/s [6,7]. Note for
omparison that the front velocity in FP is of ord
0−4 m/s[8].

Unsteady wave propagation was first predicted
HS in a one-dimensional model where the combus
ave was found to propagate with an oscillating sp

9,6]. The rise of this instability is usually explain
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through the following series of observations that pertain
to both SHS and FP.

During steady propagation of the reaction wave, a
balance is maintained between the heat released during
the reaction and the heat diffused into the mixture of
reagents. However, when the activation energy of the
reaction is sufficiently high, this balance may become
upset.

Once a front of a highly exothermic reaction is
initiated, a significant amount of heat is released
and the temperature of the reaction zone exceeds
the adiabatic temperature. The excess heat diffuses
rapidly toward the reactants, lowering the temperature
of the reaction zone and slowing down both the
conversion process and the velocity of the front.
Subsequently, the heat exchange between the reaction
zone and the heating zone “preheats” the reagents,
eventually leading to a “splash”—a high-temperature
reaction wave propagating over a preheated reactive
mixture. Gradually, the reaction front enters the region
containing a cooler mixture and the temperature of
the reaction zone decreases, suppressing the rate of
the front propagation. The heat exchange between the
reaction zone and the heating zone becomes dominant
again and the process repeats itself.

Unsteady front propagation is usually undesirable
in manufacturing. One of the goals of the modeling is
to determine the range of material parameters within
which the stability of the uniformly propagating poly-
merization front is guaranteed. In order for the param-
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actions can be neglected in combustion problems be-
cause of very high speeds of front propagation, they
may play a role in FP, where these speeds are much
slower.

Further, we show that for distributed kinetics a
“true” FP is only possible for a steadily propagating,
traveling wave reaction front. When a front propagates
in a pulsating mode, we demonstrate the existence of
pockets of unreacted monomer behind the front. These
pockets evolve via the bulk polymerization mecha-
nism.

1.2. Mathematical models

Although the mechanism of free-radical polymer-
ization involves three steps—initiation, propagation,
and termination—and five reagents—an initiator, an
active initiator radical, an active polymer radical, a
monomer, and a complete polymer chain[10], a num-
ber of simplifying assumptions can be made that reduce
the complexity of the underlying mathematical model.
Hence, we will assume[10–12]that

• The rates of reactions between the initiator radicals
and the monomer and between the polymer radicals
and the monomer are the same.

• The rate of change of total radical concentration is
much smaller than the rates of their production and
consumption.

• The initial concentration of the initiator is so large
oly-

• to
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ter ranges to be valid, a correct modeling proce
ust be followed. If the full model is too complicat

o analyze, its approximations may be considered
tead; however, their validity must also be addres
or the simplest SHS and FP problems, the simpli

ions usually reduce to choosing an appropriate app
mation of the Arrhenius kinetics function motivated
he presence of a small parameter.

In this paper, we use numerical simulations
tudy the influence of reaction kinetics on one-s
rontal polymerization in one dimension. We show t
he long-time behavior of systems governed by
roximate kinetics (sharp-front, step-function) sign
antly differs from the long-time behavior of syste
overned by Arrhenius kinetics. The differences
aused by slow bulk reactions in the initial mixture
eagents that influence both the speed and the
ime stability of the reaction front. Although these
that it is not appreciably consumed during the p
merization process.
The material diffusion is negligible compared
thermal diffusion.

Suppose that a test tube containing the mono
nitiator mixture occupies a regionΩ ∈ R3, and denot
y M(x, t) the monomer concentration and byT (x, t)

he temperature of the mixture at the pointx ∈ Ω and
he timet > 0. Then the process of free-radical po
erizations can be described[12] by what is known a
single-step, effective kinetics model of monomer
olymer conversion

∂M

∂t
= −kMeE/RgTb(1−(Tb/T )), (1)

∂T

∂t
= div(κ∇T ) + kqMeE/RgTb(1−(Tb/T )), (2)
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whereκ is the thermal diffusivity of the mixture/final
product,k is the effective pre-exponential factor in the
Arrhenius kinetics,Rg is the gas constant,E is the effec-
tive activation energy, andTb is a reference temperature
that will be specified below. The constant parameterq
is �H/cρ, where�H is the reaction enthalpy;c and
ρ are the specific heat and the mixture density, respec-
tively.

Throughout this paper we will assume that the test
tube is one-dimensional,Ω = [−L ,L] , and that the
thermal diffusivityκ is constant (ignoring possible de-
pendence ofκ on temperature and degree of conversion
1 − M/M0). Then the problem(1) and (2)reduces to

∂M

∂t
= −kMeE/RgTb(1−(Tb/T )), (3)

∂T

∂t
= κ

∂2T

∂x2
+ kqMeE/RgTb(1−(Tb/T )). (4)

We will assume thatT andM satisfy the constant
initial conditions

T (x,0) = T0, M(x,0) = M0, x ∈ [−L ,L]. (5)

In order to initiate the reaction, heat must be supplied
to the system; hence for the firstt0 seconds we will use
the following boundary conditions

Tx(−L, t) = 0, Mx(±L, t) = 0, T (L, t)

= Tb, t ∈ (0, t0). (6)
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the temperature of the reaction products away from the
front is given by

Tb = T0 + qM0, (10)

whereT0 andM0 are the initial temperature and con-
centration, respectively, in(5).

We introduce dimensionless parameters

ε = RgTb

E
, Z = qM0E

RgT
2
b

, (11)

and dimensionless variables

t̃ = kt

Z
, x̃ =

√
k

Zκ
x, M̃ = M

M0
, T̃ = T − T0

Tb − T0
.

HereTb is as defined in(10)and the Zeldovich number
Z is a non-dimensionalized activation energy[13] con-
structed as a ratio of the diffusion temperature scale
Tb − T0 to the reaction temperature scaleRgT

2
b /E.

Also, note thatZε < 1 in order to ensure that the ini-
tial temperature of the mixture is greater than absolute
zero. Then (after dropping tildes) we obtain

∂M

∂t
= −ZM exp

(
Z(T − 1)

εZ(T − 1) + 1

)
, (12)

∂T

∂t
= ∂2T

∂x2
+ ZM exp

(
Z(T − 1)

εZ(T − 1) + 1

)
. (13)

Non-dimensionalizing theconditions (5)–(7)yields
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During the front propagation regime, we will impo
he adiabatic and impenetrability boundary conditi
n the temperature and the monomer concentra
espectively by setting

x(±L, t) = 0, Mx(±L, t) = 0, t ≥ t0. (7)

Multiplying (3) by q, adding the resulting equati
o (4), integrating with respect tox, applying the adia
atic boundary conditions in(7), and setting

:=
∫ L

−L

(T + qM) dx (8)

ield

dH

dt
= 0 (9)

hent > t0, expressing conservation of enthalpy in
ystem. Thermodynamics of the problem dictates
(x,0) = 0, M(x,0) = 1, x ∈ [−l, l], (14)

x(±l, t) = 0, Tx(−l, t) = 0, T (l, t) = 1, t ∈ (0, τ0),

(15)

x(±l, t) = 0, Tx(±l, t) = 0, t ≥ τ0, (16)

herel = √
k/ZκL andτ0 = k t0/Z.

Eqs.(12) and (13)are not amenable to an anal
cal approach. Various approximations to the kine
implify the problem.

Conversion occurs primarily in a thin reaction zo
lowly ahead of the zone, and not at all behind
one. A point-source approximation in both FP
HS exploits the narrowness of the reaction zone
Theδ-function sharp-front approximation of the

ction propagation in solid fuel combustion was s
ed in [14] in the case whenε � 1. The sharp-fron
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approximation and the strength of the heat source term
follow from the analysis similar to[15].

In [12], a sharp front approximation is combined
with the step function kinetics to describe frontal poly-
merization. To start, the authors replaced the Arrhe-
nius kinetics with a step function of height equal to the
maximum of the Arrhenius function, as in[16]. The
step-function kinetics was chosen such that its integral
value on [T0, Tb] approximately equaled the integral
value of the Arrhenius kinetics function on the same
interval. Generally,Tb and, hence, the step function
can be functions of time. In[12], only the sharp-front
approximation was considered, under the assumption
that the dimensionless parameterε was small.

Here we will consider a diffused version[17] of the
step-function kinetics as one of two approximations
to compare with the full kinetics of(12) and (13). In
addition, we use Arrhenius kinetics with a cutoff, as in
the solid combustion context[18].

Approximate kinetics in the literature and in this
paper recast the problem such that traveling-wave so-
lutions exist. These lead to bifurcation and stability
analyzes.

In gasless combustion, a solution exhibiting a pe-
riodically pulsating, propagating reaction front arises
as a Hopf bifurcation from a solution describing a uni-
formly propagating front in[14]. The bifurcation pa-
rameter is the Zeldovich numberZ, defined in(11).
Amplitude, frequency, and velocity of the propagating
front were determined in nonlinear analysis. It was also
d f the
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del
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reduction of the average velocity of propagation. The
authors attributed a lack of sequential secondary bifur-
cations to the difference between the point-source and
distributed-kinetics models (as in[21]). However, the
entire spectrum of behavior for distributed kinetics was
found later for the point-source model in[23].

The literature also contains numerical studies of the
full Arrhenius kinetics. For example, the propagation
of a pulsating front of an exothermic reaction in a con-
densed phase was studied numerically in[24] for the
model (1) and (2). The stability of the reaction front
was determined to depend on a single non-dimensional
parameter

α = 9.1Z−1 − 2.5ε. (17)

It was shown that ifα > 1 then the stationary re-
action is stable. Ifα < 1 then the reaction propagates
in a pulsating regime. It was specifically noted that the
structure of the front oscillations depends onα only
and not onZ or ε separately. Additional bifurcations
were observed asα decreased further away from the
threshold of stability; the average velocity of the front
propagation was observed to decrease withα.

In [25], period doubling in gasless combustion lead-
ing to chaos was demonstrated numerically, depending
on the values of activation energy and the heat of reac-
tion. Doubling of up to the period eight was reported
with regions of existence of each consecutive solution
getting narrower and narrower.

uted
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t

χ

H hat
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emonstrated analytically that the mean velocity o
ulsating front is less than the velocity of the uniform
ropagating front. A similar,δ-function approach wa
lso adopted in[19] to perform a stability analysis.

Linear stability analyses for FP appear in a num
f papers, e.g.[12]. For a weakly nonlinear analysis

his context, see[20].
Various works have explored numerically the

amics of models with approximate kinetics, for b
HS and for FP. For instance, in[21], Arrhenius kinet

cs with a cutoff was used to observe chaotic pulsati
ollowing a number of period-doubling bifurcations

A free-interface problem for the point-source mo
n combustion has been studied numerically in[22].
or a sufficiently largeZ, the work showed transition

o chaos via a period-doubling solution and highly
egular relaxational oscillations. Increasing the bi
ation parameter lead to enhanced fluctuations a
In this paper we compare and contrast the comp
ynamics of three models: two with different forms
pproximate kinetics and one with the full Arrhen
inetics. In the first approximation, a cutoff functi
ultiplies the Arrhenius kinetics to eliminate bulk
ctions ahead of the advancing front. The cutoff fu

ion in terms of dimensional variables is

(x , t) =
{

0, T (x, t) ≤ (1 + δ)T0,

1, T (x, t) > (1 + δ)T0.
(18)

ereδ = 10−4, which is small enough to ensure t
he reaction is switched off well ahead of the front

To formulate the step-function-kinetics model[17]
e assume thatε is small; then the system of Eqs.(12)
nd (13)reduces to

∂M

∂t
= −ZMeZ(T−1), (19)
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∂T

∂t
= ∂2T

∂x2
+ ZMeZ(T−1). (20)

Next we replace the Arrhenius kineticsZ eZ(T−1) in
(19) and (20)by the step-function

K(T ) :=
{

0 , T < Tp − 1
Z
,

Z eZ(Tp−1) , T ≥ Tp − 1
Z
,

(21)

whereTp is the temperature of the mixture immediately
upon the completion of the reaction (or, analogously,
the temperature at the product end of the reaction
zone). Since this temperature is, generally, the high-
est temperature of the mixture, within this model the
reaction is assumed to occur in the temperature range[
Tp − (1/Z), Tp

]
. Unless the front is a steadily propa-

gating wave, the maximum temperature inside the test
tube and, therefore, the shape of the kinetics function
depend on time.

Here, we will assume thatTp(t) = T (xb(t), t),
where xb(t) is a point at which the monomer con-
centration falls below a prescribed threshold value
M(xb(t), t) = β. The appropriate value of the small
constant parameterβ > 0 is found to beβ =2.E−2 by
numerical experiment.

2. Numerical simulations

2.1. Numerical method
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the
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value near the endpoint of the domain in the unreacted
reagents zone. Note that, mathematically, the value of
monomer concentrationM is always nonzero. We will
choose a threshold monomer concentrationm and as-
sume that the polymerization process is finished once
the monomer concentration falls belowm.

The average velocity of the front is calculated by

v = a
�x

�t

where�x is the distance between grid points,�t is
the size of the time step, anda is the number of grid
intervals traveled through by the front in�t seconds.
Note that it may take multiple, sayn, time steps for the
front to travel through one grid interval. In that case,
we havea = 1/n.

Unless specified otherwise, throughout this section
we will assume that the parameters

q = 33.24 K◦ L/mol, κ = 0.0014 cm2/s,

k = 1 s−1, Tb = 500 K◦,

are fixed; then the state of the system is completely de-
termined once the values ofZ andε are specified. The
length of the spatial domain (test tube) in our compu-
tations varies from 4 to 87 cm, depending on the char-
acteristic time scale of the process of interest.

2.2. Code validation: role of boundary conditions

ar-
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I ntial
f

The governing system of dimensional Eqs.(3) and
4) is solved numerically using a finite differen
ethod with implicit time integration. The nonline

eaction terms in the equations are linearized u
ewton’s method. We apply Dirichlet bounda
onditionT (L, t) = Tb, whereTb is defined in(10),
t the ignition end of the domain for a short per
f time to initiate the reaction(6), and then switch t

he homogeneous Neumann boundary condition(7).
umerical experiments have demonstrated that

ong-term behavior of the reaction-diffusion equat
ystem studied in this paper is not affected by
pplication of the Dirichlet boundary condition duri

he initiation stage.
At each time step, the reaction front is defined as

rst grid point, going from left to right, at which th
oncentration of the monomer drops below 50% o
In this section, we validate our code by comp
ng its predictions with existing numerical results a
y demonstrating that the computed solution has
onservation properties predicted by the underl
odel.
We begin by showing that our code reproduces

nown, numerically determined types of FP and S
ynamics over a range ofZ values for the Arrheniu
inetics (Fig. 1) as have been reported previously
10,25], and others. The front velocity profiles p
ented inFig. 1 were computed using the same d
nd are in excellent agreement with the results of[10].

n these computations the values of the pre-expone
actorkwere adjusted

k = 1.07 s−1 whenZ = 7.25,

k = 1.43 s−1 whenZ = 8.05,
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Fig. 1. Possible modes of propagation of the polymerization front.

k = 0.25 s−1 whenZ = 9.67,

k = 6.03 s−1 whenZ = 12.08.

to match those in[10].
Using the values ofε considered inFig. 1and(17),

the threshold values of Zeldovich number can be found
to lie betweenZ = 8 andZ = 8.41. Hence, of the four
cases, the traveling wave solutions are expected to be
stable only whenZ = 7.25. Indeed, whenZ = 7.25,
following the velocity spike corresponding to the onset
of frontal mode, the front settles into propagating at a
constant speed. WhenZ is increased up toZ = 8.05,
the front propagates in the pulsating mode following
the brief transition period. When the Zeldovich num-

ber reachesZ = 9.67, our results demonstrate period
doubling. Chaos begins to develop as the Zeldovich
number is increased further.

Fig. 2shows the results of another test of the valid-
ity of our numerical method. To initiate the reaction,
wealwaysapply the Dirichlet boundary conditions for
the first 400 s during the simulations. Following this
period, the Dirichlet conditions are either retained for
the duration of time or are switched to the adiabatic
Neumann conditions once the front begins to advance
in the self-propagating mode.

According to (9), the enthalpyH defined in (8)
should be preserved under adiabatic conditions on
the temperature. The plots ofH are shown inFig.
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Fig. 2. EnthalpyH vs. time when either the Dirichlet boundary con-
dition on the right side of the tube is applied at all times (solid line)
or Dirichlet boundary condition on the right side of the tube is ap-
plied for the first 400 s and then switched to a Neumann boundary
condition (dashed line).

2 for both Neumann and Dirichlet boundary condi-
tions applied during front-propagating phase when
Z = 9.67 andε = 0.041. In the former case (dashed
line on Fig. 2), the Dirichlet boundary condition was
applied for the first 400 s on the reaction (right) side
of the test tube. During this period, a substantial
amount of heat is supplied into the system as is evident
from the rapidly increasingH. On the other hand,
once the boundary condition is switched to adiabatic
Neumann condition,H becomes independent of time
indicating that our numerical method exhibits very

little numerical dissipation (dashed line onFig. 2).
When the Dirichlet boundary condition allowing
for the heat exchange between the test tube and the
environment is maintained for the duration of time, the
value ofH begins to level off aroundt = 1000 s (solid
line on Fig. 2) indicating the essentially adiabatic,
self-sustaining nature of the reaction.

Our numerical observations support this conclusion;
beyond the transition stage, the front propagation dy-
namics are essentially indistinguishable for Dirichlet
and Neumann boundary conditions (Fig. 3) although,
as indicated byFig. 2, the temperature and monomer
distributions themselves are not necessarily the same.

2.3. Arrhenius kinetics versus non-smooth
kinetics: long-time stability of polymerization front

Here we investigate the effect of the slow, low-
temperature bulk reaction in a mixture of reagents far
ahead of the polymerization front on the velocity and
asymptotic stability of FP.

For the Arrhenius kinetics, the reaction although
very slow still does occur at low temperatures. In solid-
state combustion the flame front propagates extremely
fast—a front has to advance by distances on the or-
der of thousands of meters—for this bulk reaction to
have any appreciable effect[6]. However, in the case
of frontal polymerization the propagation speeds are
relatively low and the bulk reaction in the initial mix-
ture becomes significant if the long-time behavior of
t ng

Fig. 3. Front velocity vs. time when either Dirichlet boundary condition Dirichlet
boundary condition on the right side of the tube is applied for the first ht graph).
he polymerization front is important. Since the lo

on the right side of the tube is applied at all times (left graph) or
400 s and then switched to a Neumann boundary condition (rig
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time scalēt for the low-temperature reaction is on the
order of e−Z, one can employ the method of multiple
time scales in(12)–(16)to recover the long time scale
dependence of the front velocity[20]. This method is
identical to quasi-steady analysis of time dependence
of the traveling wave velocity in[26].

Since they were developed mostly for combustion-
type problems, the majority of popular approximations
of the Arrhenius kinetics incorporate some form of
cutoff that sets the reaction rate to zero for temperatures
below a certain threshold. For example, in[16] the
reaction rate is assumed to vanish below the reaction
temperature; in[18] the Arrhenius kinetics function
is multiplied by a cutoff function to switch off the
reaction at distances that exceed a certain critical value
ahead of the front to model the fact that the reaction
is insignificant in this region. All bulk reactions are
clearly neglected within sharp-front approximations
(e.g.[14]) as well since all reactions are reduced to a
point-source on the interface.

The bulk reaction raises the temperature and lowers
the monomer concentration ahead of the advancing
polymerization front, thereby having a stabilizing ef-
fect on its propagation. Indeed, from the point of view
of the stability criterion(17), since the temperature
behind the front remains equal toTb and the non-
dimensional Zeldovich numberZ is proportional to
the monomer concentration in the initial mixture of
reagents, the parameterε does not change on the long
time scalēt, while the parameterZ decreases with̄t,
e er
t e of
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f

Z
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r
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Fig. 4. Position of polymerization front for the various types of ki-
netics.

kinetics are depicted inFigs. 4 and 5, respectively.
Observe that, initially, all three kinetics lead to the
uniformly propagating polymerization fronts advanc-
ing with approximately the same velocities. Although
the dynamics of the fronts corresponding to either of
the modified kinetics does not change with time, the
front corresponding to the Arrhenius kinetics acceler-
ates, and the frontal polymerization is completed by
t ≈ 3300 s (here we assume thatm defined in Section
2.1is equal to 1.E−3, that is the polymerization is con-
sidered to be complete once the concentration of the
monomer falls below 1.E−3).

The consecutive positions of the reaction front at
equally spaced times for both the Arrhenius kinetics
and the Arrhenius kinetics with the cutoff are shown in

F ki-
n

ventually falling below the stability threshold. In ord
o measure the influence of bulk reaction on the valu
he Zeldovich number that is “seen” by the advanc
ront, we introduce the effective Zeldovich number

eff(t) := qM(a, t)E

RgT
2
b

(22)

here the pointa lies ahead of the front far away fro
he reaction zone. When the heat diffusion is relati
low, we expect thatZeff is mainly influenced by bul
eactions.

We compare the results of simulations for the
rrhenius kinetics, the Arrhenius kinetics multipli
y a cutoff function(18), and step-function kinetic
21).

First, letZ = 7. The position and velocity of th
olymerization front for the three different types
ig. 5. Velocity of polymerization front for the various types of
etics.
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Fig. 6. Snapshots of the monomer profiles at equal time intervals for the Arrhenius kinetics (left) and the Arrhenius kinetics with cutoff (right).
The polymerization front propagates to the left.

Fig. 6. Note that, in the system governed by the Arrhe-
nius kinetics with the cutoff, the polymerization front
propagates at the same rate and the concentration of the
monomer remains constant in the mixture of reagents
ahead of the front. On the other hand, the monomer
is being depleted in the region ahead of the advancing
front in the system governed by the Arrhenius kinetics;
the polymerization in this system occurs via both the
bulk and the frontal polymerization. The polymeriza-
tion front exists throughout the polymerization process
and propagates at an increasing speed. The effective
value of the Zeldovich number shown onFig. 7 de-
creases with time for the Arrhenius kinetics and re-
mains unchanged for both the Arrhenius kinetics with
a cutoff and step-function kinetics.

Next we consider frontal polymerization systems
governed by the Arrhenius kinetics and Arrhenius ki-
netics with cutoff whenZ = 8.089 andε = 0.05. Ac-
cording to the stability criterion(17), the uniformly
propagating fronts in such systems should be unsta-
ble. Indeed, both the front velocity and the front tem-
perature for the Arrhenius kinetics exhibit oscillating
profiles as shown inFig. 8(cf. Fig. 1). As the front tem-
perature we use the temperature of the mixture when
the concentration of the monomer falls below 2% of
its initial value; this choice is further elaborated upon
in [17]. However, if the simulation is run for signifi-
cantly longer time, long-time-scale behavior emerges
as evidenced byFig. 9, showing the upper and lower en-
velopes of the front velocity and the front temperature
p he-

nius kinetics with the cutoff. (We use the envelopes for
ease of visualization since both quantities are rapidly
oscillating on the long time scale.) As the initial con-
dition for these simulations, we used a profile that is
“close” to the profile of the uniformly propagating trav-
eling wave corresponding toZ = 8.089 andε = 0.05.
Clearly this profile is unstable, as demonstrated inFig.
9 by the initial increase in the amplitude of velocity os-
cillations (cf.[24]). The front pulsations corresponding
to the Arrhenius kinetics with the cutoff then stabilize
and retain the same amplitude throughout the simula-
tions; however the amplitude of the front pulsations for
the system governed by the Arrhenius kinetics mono-

Fig. 7. Effective value of the Zeldovich number for the various types
of kinetics.
rofiles for both the Arrhenius kinetics and the Arr
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Fig. 8. Front velocity (left) and front temperature (right) profiles for the Arrhenius kinetics.

tonically decreases with time. If the computations are
run for a longer time, the front pulsations die down,
leading to the uniformly propagating polymerization
front that will eventually disappear through the combi-
nation of the bulk and frontal polymerization discussed
in the previous example.

The stabilization of the polymerization front be-
comes even more pronounced as Zeldovich numberZ
decreases toward the stability threshold (Fig. 10). The
values ofZ andε in Fig. 10correspond toα = 1.005
and the criterion (17) indicates the stability of a uni-
formly propagating solution of(3) and (4). The system,
however, is still clearly unstable with respect to front
pulsations, as the initial stages of front propagation are

characterized by the increased amplitude of pulsations
even though the appropriate restriction of the travel-
ing wave solution to(3) and (4)was used as the initial
data. The same benchmark was used in[24] to dis-
tinguish between stable and unstable front dynamics.
We attribute this apparent discrepancy to the approx-
imate character of the criterion(17). Observe that the
amplitude of front pulsations remains the same for the
systems governed by the Arrhenius kinetics with the
cutoff and step-function kinetics (Fig. 11), while pul-
sations essentially disappear in the system governed
by the full Arrhenius kinetics. Hence, the instability
criterion (17) used in[24] may fail on the long time
scale.

F the fron Arrhenius
k

ig. 9. Upper and lower envelopes of the front velocity (left) and
inetics with cutoff.
t temperature (right) profiles for the Arrhenius kinetics and the
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Fig. 10. Upper and lower envelopes of the front velocity (left) and the front temperature (right) profiles for the Arrhenius kinetics and the
Arrhenius kinetics with cutoff.

Fig. 12shows the evolution ofZeff for systems with
Z = 8.05 andε = 0.05. The effective Zeldovich num-
ber decreases in a system governed by the Arrhenius
kinetics and remains constant in systems governed by
discontinuous kinetics. We have also plotted inFig. 12
the evolution ofZeff for a system governed by the Ar-
rhenius kinetics in the absence of heat diffusion. Note
that the curve forZeff for this system coincides with
the curve for the system with Arrhenius kinetics when
the thermal diffusivityκ �= 0 thus indicating that the
time scale for heat diffusion is sufficiently long so that
the heat from the frontal reaction does not affect the
regions sufficiently far ahead of the reaction zone. The
stabilizing phenomenon results from reactions in the

Fig. 11. Upper and lower envelopes of the front velocity for the
Arrhenius kinetics with cutoff and step-function kinetics.

bulk rather than from heat generated by the frontal
reaction.

As another test of this hypothesis we use the fol-
lowing numerical experiment. We choose a large time
t = 4400 s and consider a system governed by the
Arrhenius kineticswith a cutoff (all bulk reactions
ahead of the front have thus been switched off) with
M(x,4400) andT (x,4400) as initial conditions.

The evolution of velocity envelopes for this system
is presented inFig. 13. The system governed by the
Arrhenius kinetics with a cutoff and initial conditions
M(x,0) andT (x,0) is characterized by velocity pulsa-
tion of constant amplitude (Fig. 11). On the other hand,
velocity pulsations decay in the system governed by

Fig. 12. Evolution of the effective Zeldovich number for various
types of kinetics.
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Fig. 13. Upper and lower envelopes of the front velocity for the
Arrhenius kinetics with cutoff and step-function kinetics.

the Arrhenius kinetics with a cutoff whenM(x,4400)
andT (x,4400) are used as initial data. We conclude
thatZeff passes the stability threshold for the uniformly
propagating reaction wave for somet ∈ (0,4400).

Observe that the amplitude of velocity oscillations
decreases slightly faster for the system with Arrhenius
kinetics than for the system with Arrhenius kinetics
with a cutoff (Fig. 13) due to the presence of bulk re-
actions that suppress the effective Zeldovich number
even further.

Note that the long time scale for our choice of pa-
rameters is on the order of 1 h, and the average front
velocity is approximately 50 cm/h. The amount of time
necessary for stabilization to become pronounced de-
pends on the size of the test tube and parameters of
the problem—the closer is the system to the stabil-
ity threshold, the more significant the stabilization ef-
fect of the bulk reaction will become. For the values
of parameters inFig. 10 the decay in the amplitude
of velocity/temperature oscillations becomes apparent
in ≈20 min—the time comparable to the duration of a
typical frontal polymerization experiment.

2.4. Solution features for distributed kinetics:
frontal versus bulk effects

2.4.1. Pockets of unreacted monomer
The systems governed by various one-step kinet-

ics discussed in this paper exhibit a similar hierar-
chy of intermediate-time solution dynamics that range
f lsa-
t e

sequence presented inFig. 1 for the Arrhenius kinet-
ics. In all cases the type of dynamics depends on val-
ues of nondimensional parameters of the problems—ε

and the Zeldovich numberZ. In the previous section
we have demonstrated for the Arrhenius kinetics that
the reaction cannot be considered to occur strictly in a
frontal mode, as the bulk reactions are always present;
the propagation, however, can be approximated as be-
ing frontal on intermediate time scales, since the bulk
reactions are slow. Here we show that, in fact, polymer-
ization can be considered to be purely frontal only for
uniformly propagating reaction waves in systems gov-
erned by kinetics that ignore low-temperature bulk re-
actions. That is, for Zeldovich numbers beyond the first
critical threshold (pulsating mode) therealwaysexists
a non-frontal component of the dynamics. In particu-
lar, we show that the monomer profile periodically be-
comes non-monotone in the regions experiencing high
front acceleration, and pockets of unreacted monomer
form behind the rapidly advancing front. These pockets
later disappear via bulk polymerization.

We begin by considering systems governed by the
full Arrhenius kinetics when the value of the Zeldovich
number exceeds the traveling wave stability threshold.
We setZ = 10 andε = 0.05; then the front propagates
via a doubly-periodic pulsating mode (cf.Fig. 3).

In this regime, the polymerization front evolves by
constantly cycling through the series of three distinct
motions. First, the front slowly diffuses into the fresh
mixture of reagents; this process is followed by a rapid
“ a-
g me
t

n is
t rs to
o eted
s tion
z er in
t ance
o ont;
t mer
p nds
l er-
i eri-
z

per-
a e
d -in”
rom traveling wave propagation to a chaotic pu
ion mode[14,10,24,12,17]. The dynamics mirror th
sharpening” of the front, which then quickly prop
ates while slowing down and widening at the sa

ime (Fig. 14).
The interesting feature of this type of propagatio

hat its “sharpening” stage is very rapid and appea
ccur in a bulk regime, since the monomer is depl
imultaneously everywhere within a wide reac
one. Furthermore, the reaction rate remains high
he front of the reaction zone leading to the appear
f a pocket of unreacted monomer at the tail of the fr

he front subsequently detaches from the mono
ocket. The pocket persists for several seco

eaving it far behind the rapidly advancing polym
zation front and then disappears via bulk polym
ation.

The successive profiles of the monomer and tem
ture concentrations shown inFig. 14demonstrate th
ynamics of the monomer pockets; the “zoomed
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Fig. 14. Pockets of unreacted monomer behind the polymerization front: snapshots of monomer concentration and temperature profiles. The
front advances to the left.

version ofFig. 14is depicted inFig. 15. The plots of
both the position of the front (defined as in Section
2.1) and the position of the secondary maximum of
the concentration profile shown inFig. 16 illustrate
the periodic nature of the effect. Note that for values
of time for which two graphs inFig. 16coincide, the
concentration profile is a monotone function ofx and
the secondary maximum does not exist.

In pulsating propagation, the appearances of
monomer pockets and the temperature spikes in the
mixture appear to be correlated (cf.Fig. 14). Note that
the existence of pockets of reagents behind the combus-
tion front was alluded to in[24], however, it is not clear

Fig. 15. Pockets of unreacted monomer behind the polymerization
front: zoomed-in snapshots of the monomer concentration profile.

whether the evidence of their existence was numerical
or experimental.

Before trying to uncover the reasons for the exis-
tence of the monomer pockets, we want to rule out the
possibility that they are simply numerical artifacts re-
sulting e.g. from numerical under-sampling. We have
already pointed out that our code exhibits very little
numerical dissipation—this was indicated byFig. 2for
the enthalpyH of the system defined by(8). Further-
more, although our algorithm is not adaptive, since the
original problem was posed in one dimension, simple
grid refinement throughout the domain is not too com-
putationally expensive.

Fig. 16. Positions of the polymerization front and the secondary
maximum of the concentration profile.
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Fig. 17. Comparison of computed monomer concentration and temperature profiles for various time steps and grid sizes.

The calculations of temperature and monomer pro-
files are shown inFig. 17 for various time steps and
mesh sizes. Except for the case�x =5.E−4, the re-
sults are indistinguishable—grid refinement clearly in-
dicates numerical convergence and all sharp features
are resolved and grid independent. In fact, the number
of grid points in the regions of high gradients never falls
below 100. Even when�x = 5.E−4, the solution pro-
files are essentially the same, except for a small time
shift. We conclude that non-monotone monomer dis-
tributions with the regions of non-zero monomer con-
centration behind a polymerization front correspond to
a true solution of the governing system of equations.

2.4.2. Rationale for the existence of pockets of
unreacted monomer

We begin this section by considering the follow-
ing numerical experiment. As is shown inFig. 14the
monomer concentration profile att = 138 s is mono-
tone. Consider the monomer concentration and the tem-
perature profiles whent = 138 s as initial conditions
for a polymerization system in which the heat diffu-
sion is negligible (κ = 0). Then the governing system
of Eqs.(3)–(5) reduces to a coupled system of ODEs
with the spatial coordinatexas parameter. This system
can be solved either by settingκ = 0 in our code or by
using Maple. The solution profile fort = 140.4 s ob-
tained with our code whenκ = 0 is presented inFig.
18.

out
d i-

lar, especially whenx > 0.95 where the influence of
heat diffusion is, therefore, the weakest. Further, the
monomer and the temperature distributions att = 138 s
appear to be such that, in the absence of heat dif-
fusion, the regions with higher monomer concentra-
tion experience complete conversion faster than the
regions with lower monomer concentration. Although
this might appear as an indication of a higher tempera-
ture in monomer-rich regions of the gradient zone when
t = 138 s, we will soon see that it is not necessarily
so.

Consider again the system of ODEs describing the
evolution of temperature and monomer concentrations
in the system without heat diffusion withM(x, t) and
T (x, t) as the initial data. Then Eqs.(3)–(5) take the

Fig. 18. Comparison of monomer concentrations in systems with
and without heat diffusion.
The monomer profiles for systems with and with
iffusion in Fig. 18 appear to be qualitatively sim



160 S.A. Cardarelli et al. / Physica D 206 (2005) 145–165

form


∂M̃

∂t̃
= −kM̃eE/RgTb(1−(Tb/T̃ )), t̃ > t,

∂T̃

∂t̃
= kqM̃eE/RgTb(1−(Tb/T̃ )), t̃ > t,

M̃ (x, t) = M(x, t), T̃ (x, t) = T (x, t).

(23)

Since the enthalpy densitỹh(x, t̃) = qM̃(x, t̃) +
T̃ (x, t̃) is conserved

h̃(x, t̃) = qM(x, t) + T (x, t) = h(x, t),

pointwise inx, we can express̃T in terms ofM̃ and
reduce the system(23) to a single ODE that can be
solved to obtain an implicit equation

t̃ = k−1e−1/ε
[
Ei

{
Tb

ε(h(x, t) − qM̃(x, t̃))

}
− Ei

{
Tb

εT (x, t)

}]
+ k−1e(Tb−h(x,t))/εh(x,t)

[
Ei

{
qTbM(x, t)

εh(x, t)T (x, t)

}

−Ei

{
qTbM̃(x, t̃)

εh(x, t)(h(x, t) − qM̃(x, t̃))

}]
(24)

for M̃(x, t̃) where Ei(·) is the exponential integral.
Viewed differently, given the initial dataT (x, t) and
M(x, t) at the timet, the Eq.(24) determines the time
necessary to reach the prescribed monomer concentra-
tion M̃ at the pointx in the absence of heat diffusion.
Since the monomer concentration in our mathematical
model never vanishes, we will postulate that the con-
version process at the pointx is complete when the
m ll
p
S
t

t̃
b

, t)

}]

-
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Z
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t = 125 s, the “wide” polymerization front slowly “dif-
fuses” into the unreacted monomer. Whent = 141 s
the front is at the final stages of the front sharpening
process, and whent = 157 s, the front is in the fast
propagation regime.

As indicated by dimensionless PDEs(12) and (13),
for small ε andT < 1 (dimensionalT < Tb), the re-
action slows down with an increasingZ when T is
away from 1. On the other hand, the reaction accel-
erates whenT is sufficiently close to 1. If initially the
front is very sharp and the temperature in the reac-
tion zone is not too high, then for largeZ we expect
that the monomer concentration should decrease slowly
in the zone adjacent to the front containing the fresh
monomer. Hence, the front widens via its slow diffusion

into the monomer. This process is accompanied by the
slow rise in the temperature in the same region. This
results in the monomer concentration and temperature
profiles depicted inFig. 19for t = 125 s.

Note that fort = 125 in Fig. 19, the temperature
at the point of the minimum conversion time is lower
than the temperature at the point of the maximum con-
version time. The concentration of unreacted monomer
near the point of minimum conversion time is higher
t ax-
i the
f rate

c en-
t ction
i en-
t

in
t s the
t tion
z lose
t on,
onomer concentration atx falls below some sma
rescribed valuem to be chosen later (cf. Section2.1).
ubstitutingm for M̃ into (24)we obtain aconversion
imefunction

(x, t) := k−1e−1/ε
[
Ei

{
Tb

ε(h(x, t) − qm)

}
− Ei

{
T

εT (x

−Ei

{
qTbm

εh(x, t)(h(x, t) − qm)

}]
.

We will use the functioñt(x, t) to estimate the con
ersion time in systems where the heat diffusio
mall but not negligible.

Consider again the polymerization process w
= 10 andε = 0.05 and suppose thatm=1.E−3—for

iven values ofZandε this threshold is sufficient to r
olve the fine monomer profile features. InFig. 19we
resent the temperature, monomer concentrations
onversion time profiles at three different times. W
+ k−1e(Tb−h(x,t))/εh(x,t)
[
Ei

{
qTbM(x, t)

εh(x, t)T (x, t)

}

(25)

han the concentration near the point of the local m
mum conversion time. This can be explained by
act that although the initial temperature/reaction

an be lower for a point with higher monomer conc
ration, the amount of heat released during the rea
s higher for the regions with higher monomer conc
ration leading to faster conversion times.

The combination of reaction and heat diffusion
he direction of the unreacted monomer zone raise
emperature of the reagent in the part of the reac
one where the concentration of the monomer is c
o its initial value. In the absence of heat diffusi
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Fig. 19. Temperature, monomer concentrations, and conversion time
profiles in a system withZ = 10 andε = 0.05.

the resulting large difference in the local maximum
and minimum conversion times fort = 125 s sets the
stage for the formation of a monomer pocket at about
t = 130 s.

Near the point of the minimum conversion time for
t = 125 s, the reaction rate is high by definition. Corre-
spondingly, the heat release begins to dominate the heat
diffusion. Further, the heat flux toward the cooler, unre-
acted monomer exceeds the flux toward the products of
the reaction. We conclude the plot of conversion time
for t = 125 s should qualitatively predict the structure
of the solution fort > 125 s, as is confirmed by the
monomer profile fort = 141 s inFig. 19.

Fig. 19shows that the reaction immediately to the
right of x = 1 appears to proceed at about the same
constant temperature att = 141 s as att = 125 s sug-
gesting lack of substantial heat diffusion. Hence, the
conversion time as predicted by(24) should be fairly
accurate.Fig. 18 confirms the appropriateness of us-
ing the adiabatic model nearx = 1. The actual conver-
sion time for the monomer pocket should be somewhat
lower due to the heat diffusion.

The above discussion implies that the monomer-to-
polymer transition betweent = 125 s andt = 141 s oc-
curs essentially via the bulk mode; beyondt = 141 s
it is via the combination of the bulk and the frontal
mode until the monomer pocket disappears completely
at some time beforet = 157 s. The evolution then pro-
ceeds purely in the frontal mode until the sharp front

Fig. 20. Temperature, monomer concentrations, and conversion time
profiles in a system withZ = 7 andε = 0.05.
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Fig. 21. Pockets of unreacted monomer behind the polymerization
front propagating via a periodic pulsating mode in a system gov-
erned by Arrhenius kinetics: zoomed-in snapshots of the monomer
concentration profile.

quickly reaches the regions with lower temperature
and slows down. The propagation mechanism then re-
peatedly cycles through the same modes as outlined
above.

Because of the presence of heat diffusion, the small
dip in the conversion time fort = 157 s inFig. 19does
not lead to the formation of a monomer pocket. The
adiabatic model predicts the differences in conversion
time between the head and the tail of the front. How-
ever, the heat diffusion levels off these differences. In-
deed, the same effect is indicated for the system with
traveling-wave-type front (Z = 7) as evidenced byFig.
20.

Fig. 22. Pockets of unreacted monomer behind the polymerization
front propagating via a periodic pulsating mode in a system governed
by Arrhenius kinetics with a cutoff.

An important observation that follows from the
above discussion is that the polymerization process in
a doubly-periodic pulsating propagation, e.g.Z = 10,
ε = 0.05 considered throughout this section,cannotbe
described by using a point-source kinetics such as in
[14]. Features like monomer pockets will never appear
since all bulk reactions are neglected.

Next we will examine whether non-monotonicity
of monomer concentration profile is characteristic of
other types of pulsating propagation for Arrhenius and
other types of distributed kinetics.

First, consider a polymerization system governed by
Arrhenius kinetics whenZ = 8.5 andε = 0.05. On an

Fig. 23. Pockets of unreacted monomer behind a periodic and doubly periodic pulsating polymerization front in a system governed by step-
function kinetics.



S.A. Cardarelli et al. / Physica D 206 (2005) 145–165 163

intermediate time scale, a polymerization front in this
system propagates in a periodic pulsating mode. The
monomer pocket formation can still be clearly observed
in this case (Fig. 21); the concentration of monomer
in the pocket is, however, several orders of magni-
tude lower than the concentration in similar pockets
in doubly-periodic propagation (Fig. 15). We con-
jecture that the maximum concentration of monomer
within a pocket rises with an increase in Zeldovich
number.

When a polymerization system withZ = 10 and
ε = 0.05 is governed by the Arrhenius kinetics with a
cutoff (18), the monomer dynamics at an intermediate
time scale is essentially the same as for the Arrhenius
kinetics (Fig. 22). The formation of monomer pockets
behind a polymerization front can also be observed in
systems governed by the step-function kinetics, both
in a periodic pulsations and in a doubly-periodic pul-
sations mode (Fig. 23). Note that non-smoothness of
monomer concentration profiles inFig. 23is due to the
discontinuous character of step-kinetics.

In summary, we demonstrated that all distributed
kinetics studied in this paper that are known to exhibit
the hierarchy of modes of front propagation—traveling
wave, periodic pulsating, doubly-periodic pulsating,
etc.—cannot be fully described in terms of frontal
polymerization alone beyond the steady traveling wave
regime. The bulk mode of monomer conversion be-
comes important when a wide front evolves to a sharp
front resulting in a formation of a monomer pocket
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Fig. 24. Monomer concentration, conversion time, and temperature
as functions ofx andt.

front—the right-most pocket centered nearx = 1.1 cm
disappears aroundt = 175 s when the front is located
at aboutx = 0.5 cm. The related local maxima of con-
version time and the temperature spikes can be clearly
seen on the respective plots.

3. Conclusions

We considered a one-step kinetics model of free-
radical frontal polymerization in which a monomer-
hat subsequently disappears via a bulk polyme
ion. These effects cannot be captured in point-so
inetics where the bulk reaction is ignored.

Further, note that for pulsating fronts the assu
ion that the width of the reaction zone is of orderε is
enerally invalid (Fig. 14).

We conclude this section by plotting the monom
oncentration, temperature, and the conversion
henZ = 10 andε = 0.05 as functions of both tim
nd spatial coordinate (Fig. 24). The two-dimensiona
gures presented throughout this section correspo
ections of these plots by planes perpendicular to
ime-axis. Note that the perspective for the tempera
s different than that for two other plots.

The monomer pockets inFig. 24are represented b
mall protrusions in the concentration plot pointing
he direction of time-axis. The monomer pockets
ive for sufficiently long time to exist well behind th
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initiator mixture is converted into a polymer via
a propagating self-sustaining reaction front. We
demonstrated that some of the assumptions that are
valid in combustion problems may lead to incorrect
results in FP, mainly because of the differences in the
magnitudes of non-dimensional parameters in frontal
polymerization versus gasless combustion.

We showed that the long-time behavior of systems
modeled with step-function and cutoff kinetics signif-
icantly departs from the long-time behavior of sys-
tems modeled with Arrhenius kinetics mainly due to
the influence on front dynamics of slow bulk reac-
tions in the initial mixture of reagents. These reactions
can be neglected in combustion problems because of
very high speeds of front propagation; however they
may play a role in FP where these speeds are much
slower.

Further, for all types of distributed kinetics consid-
ered in this paper, we demonstrated the existence of
pockets of unreacted monomer behind pulsating poly-
merization fronts. The time evolution of these pockets
proceeds via bulk polymerization. Hence, the “true”
frontal polymerization in systems governed by dis-
tributed kinetics is possible only when bulk reactions
ahead of the front are neglected and only for fronts that
propagate with a constant speed.

Although the systems governed by the full Arrhe-
nius kinetics and its point-source approximations gen-
erally exhibit the same spectrum of solution behav-
ior, the stability thresholds for uniformly propagating
f is-
c ulk
r type
k sys-
t ures
t tics.
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We have also shown that the assumption that the
width of the reaction zone is of orderε is generally
invalid for pulsating fronts.
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