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Abstract

In free-radical polymerization, a monomer-initiator mixture is converted into a polymer. Depending on initial and boundary
conditions, free-radical polymerization can occur either in a bulk mode (BP) or in a frontal mode (FP) via a propagating self-
sustaining reaction front. The main goal of this paper is to study the role that bulk polymerization plays in frontal polymerization
processes for various one-step kinetics models.

We use numerical simulations to study the influence of reaction kinetics on one-dimensional frontal polymerization. We show
that the long-time behavior of systems modeled with discontinuous distributed kinetics (e.g. step-function kinetics) significantly
departs from the long-time behavior of systems modeled with Arrhenius kinetics. The difference is due to slow BP in the initial
mixture of reagents, which influences both the speed and the long-time stability of the reaction front.

Further, we show that for distributed kinetics a “true” FP is only possible for a steadily propagating, traveling-wave reaction
front. When a front propagates in a pulsating mode, we demonstrate the existence of pockets of unreacted monomer behind the
front. These pockets evolve via a bulk polymerization mechanism.

A mathematical model of one-step free-radical frontal polymerization is identical to the model of gasless combustion, so bulk
reactions play a role in the latter context, as well. However, fronts propagate much faster in combustion than in polymerization,
and slow bulk reactions in regions ahead of the burning front can generally be neglected.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction high enough to generate and initially sustain the reac-
tion front. Further, the reaction rate must be extremely
1.1. Physical background small at the initial (ambient) temperature but very large

atthe front temperature. The high reaction rate coupled
We study the interplay between two different modes with the exothermicity of the reaction must be sufficient
of free-radical polymerization—frontal polymeriza- to overcome heat losses into the reactants and product
tion (FP) via a propagating, localized reaction zone zones.
[1,2] and bulk polymerization (BP) within a distributed The mode of conversion may also depend on the
reaction zone. While BP has been widely used in man- physical state of both reagents and the final product.
ufacturing of plastics, FP remains at the experimental In particular, the monomer can be a liquid and the
stage. FP has an advantage over BP in the speed ofpolymer can be either a solid or a very viscous lig-
conversion and has a number of potential uses suchuid [3]. To minimize flow transport in the system, the
as filling or sealing of structural cavities, rapid cur- viscosity of the monomer can be increased by adding
ing of polymers, and uniform curing of thick polymers  to the system inactive components such as silica gel
(3]. [3]. Here we will assume that both reagents and the
Free-radical polymerization is the process of con- final product are viscous enough for us not to be con-
verting a monomer-initiator mixture into a polymer, cerned with convective effects and bubble formation
which occurs when a thermally unstable initiator is that affect the polymerization dynamics in the liquid
mixed with a monomer. The initiator molecules de- phase.
compose into radicals that combine with the monomer A more extensively studied chemical process with
to form reactive polymer chains (polymer radicals) that a similar reaction mechanism is self-propagating high-
continue to grow by incorporating additional molecules temperature synthesis (SHS)—a combustion process
of the monomer. The growth may terminate through a characterized by a heat release large enough to prop-
reaction with either another reactive polymer chain or agate a combustion front through a powder compact,
an initiator radical. The polymer molecule becomes in- while consuming the reactant powdg4ss]. The sim-
active following the termination step. plest models and front propagation mechanisms for FP
The polymerization reactions are exothermic and and SHS are essentially the same, except for the mag-
are modeled with temperature-dependent (Arrhenius) nitudes of the model parameters. These differences in
kinetics. In the bulk mode, the temperature of the test parameter values may lead to the differences in ob-
tube is raised uniformly throughout the tube, accelerat- servable long-time behavior between systems under-
ing the polymerization reactions that occur everywhere going SHS and FP, as will be discussed later in this
inside the tube at the same time. In the frontal mode, paper.
the reactions are initiated locally and then propagate  Several different zones are usually distinguished
through the tube via the thin, self-sustaining reaction in materials undergoing SHS: reactants zone, heating
zone determined by the coupling between the thermal zone where chemical reactions have not yet been initi-
diffusion and the reaction kinetics. ated, a reaction zone, and a final product zone that has
Atypical FP experiment can be performed inaglass no influence on the velocity of the combustion wave.
tube filled with reagents. An external heat source, when A similar zone structure characterizes mixtures under-
applied at the top of the tube, initiates a descending going frontal polymerization.
front that appears as a moving region of polymer for- Both steady and unsteady combustion wave propa-
mation. Depending on the choice of reactants and the gation have been observed in SHS. The wave velocity
conditions of the experiment, the front either may or in SHS is of order 10° to 102m/s [6,7]. Note for
may not propagate with a constant speed. Various non-comparison that the front velocity in FP is of order
uniform propagation scenarios can occur, even if the 10~4m/s[8].
front always remains flat—the situation considered in  Unsteady wave propagation was first predicted for
this paper. SHSin a one-dimensional model where the combustion
Several conditions are necessary for the existence ofwave was found to propagate with an oscillating speed
the frontal mode. First, the ignition temperature mustbe [9,6]. The rise of this instability is usually explained
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through the following series of observations that pertain actions can be neglected in combustion problems be-
to both SHS and FP. cause of very high speeds of front propagation, they

During steady propagation of the reaction wave, a may play a role in FP, where these speeds are much
balance is maintained between the heat released duringslower.
the reaction and the heat diffused into the mixture of  Further, we show that for distributed kinetics a
reagents. However, when the activation energy of the “true” FP is only possible for a steadily propagating,
reaction is sufficiently high, this balance may become traveling wave reaction front. When a front propagates
upset. in a pulsating mode, we demonstrate the existence of

Once a front of a highly exothermic reaction is pockets of unreacted monomer behind the front. These
initiated, a significant amount of heat is released pockets evolve via the bulk polymerization mecha-
and the temperature of the reaction zone exceedsnism.
the adiabatic temperature. The excess heat diffuses
rapidly toward the reactants, lowering the temperature 1.2. Mathematical models
of the reaction zone and slowing down both the
conversion process and the velocity of the front. Although the mechanism of free-radical polymer-
Subsequently, the heat exchange between the reactionzation involves three steps—initiation, propagation,
zone and the heating zone “preheats” the reagents,and termination—and five reagents—an initiator, an
eventually leading to a “splash”—a high-temperature active initiator radical, an active polymer radical, a
reaction wave propagating over a preheated reactivemonomer, and a complete polymer chiif], a num-
mixture. Gradually, the reaction front enters the region ber of simplifying assumptions can be made that reduce
containing a cooler mixture and the temperature of the complexity of the underlying mathematical model.
the reaction zone decreases, suppressing the rate oHence, we will assumg0-12]that
the front propagation. The heat exchange between the
reaction zone and the heating zone becomes dominante The rates of reactions between the initiator radicals
again and the process repeats itself. and the monomer and between the polymer radicals

Unsteady front propagation is usually undesirable  and the monomer are the same.
in manufacturing. One of the goals of the modeling is e The rate of change of total radical concentration is
to determine the range of material parameters within ~ much smaller than the rates of their production and
which the stability of the uniformly propagating poly- consumption.
merization front is guaranteed. In order for the param- e The initial concentration of the initiator is so large
eter ranges to be valid, a correct modeling procedure thatitis not appreciably consumed during the poly-
must be followed. If the full model is too complicated merization process.
to analyze, its approximations may be considered in- ¢ The material diffusion is negligible compared to
stead; however, their validity must also be addressed. thermal diffusion.

For the simplest SHS and FP problems, the simplifica-

tions usually reduce to choosing an appropriate approx- ~ Suppose that a test tube containing the monomer-
imation of the Arrhenius kinetics function motivated by  initiator mixture occupies a regia2 € R3, and denote
the presence of a small parameter. by M(x, r) the monomer concentration and BYx, 7)

In this paper, we use numerical simulations to the temperature of the mixture at the pointg £2 and
study the influence of reaction kinetics on one-step the timer > 0. Then the process of free-radical poly-
frontal polymerization in one dimension. We show that merizations can be describf®] by what is known as
the long-time behavior of systems governed by ap- a single-step, effective kinetics model of monomer-to-
proximate kinetics (sharp-front, step-function) signifi- polymer conversion
cantly differs from the long-time behavior of systems

governed by Arrhenius kinetics. The differences are — = —kMe®/ReTo(0=(To/T)) (1)
caused by slow bulk reactions in the initial mixture of
reagents that influence both the speed and the Iong—ﬂ — div(cVT) + queE/RgTb(lf(Tb/T)) )

time stability of the reaction front. Although these re-  or
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wherex is the thermal diffusivity of the mixture/final  the temperature of the reaction products away from the
productk is the effective pre-exponential factor in the front is given by

Arrhenius kineticsRy is the gas constartis the effec- .
tive activation energy, ant, is a reference temperature To = To + qMo, (10)
that will be specified below. The constant parameter  \where7y and Mg are the initial temperature and con-
is AH/cp, where A H is the reaction enthalpy and centration, respectively, if5).

p are the specific heat and the mixture density, respec-  We introduce dimensionless parameters

tively. RAT MoE
Throughout this paper we will assume that the test  — —¢ b, 7 = avo , (11)
tube is one-dimensionaf? = [-L, L], and that the E RyTy

thermal diffusivityx is constant (ignoring possible de-
pendence of on temperature and degree of conversion

1 — M/My). Then the problenfl) and (2)reduces to kt & . M . T—To
[ —x,
Zk

;:—’52: —_—, T: .
oM Mo T, — To
ot

and dimensionless variables

— _kMeE/RgTb(lf(Tb/T))’ (3) z
HereTy is as defined if10) and the Zeldovich number
T _ KBZ_T + kqMeE/RaTo(~(Tb/ 7)) ) Zisa non-dimengionalized gctivgtion eneftg] con-
o dx? structed as a ratio of the diffusion temperature scale
i 2
We will assume thal andM satisfy the constant b — To to the reaction temperature scalg7y/E.
initial conditions Also, note thatZe < 1 in (_)rder t_o ensure that the ini-
tial temperature of the mixture is greater than absolute

T(x,0)= Ty, M(x,0)= Mo, xe[-L,L]. (5) zero. Then (after dropping tildes) we obtain
Inordertoinitiate the reaction, heat mustbe supplied M _ZM exp Z(T - 1) (12)
to the system; hence for the firgtseconds we will use a eZ(T—1)+ 1)’
the following boundary conditions 5
o _ ot + ZM ex Z(r-1 (13)
T(~L,1) =0, My(L,1)=0, T(L,1) o o Plezar—1n+1)
= Tp, t € (0, 10). (6) Non-dimensionalizing theonditions (5)—(7Yyields
During the front propagation regime, we willimpose  T(x,0) =0, M(x,0) =1, x € [/, ], (14)

the adiabatic and impenetrability boundary conditions
on the temperature and the monomer concentration, s, (+7, 1) = 0, T (—1,£) = 0, T(l,1) = 1, ¢ € (0, 10).
respectively by setting

(15)
To(xL,t) =0, M,(£L,1) =0, t > 10. @)
Multiplying (3) by g, adding the resulting equation ~ Mx(El, 1) =0, Tu(£l,1) = 0, 1 = 7o, (16)
to (4), integrating with respect te, applying the adia-  \yherel = /k]ZxL andty = k 1o/ Z.
batic boundary conditions ifv), and setting Egs.(12) and (13)are not amenable to an analyt-
L ical approach. Various approximations to the kinetics
H:= / (T + gM) dx (8) simplify the problem.

-L Conversion occurs primarily in a thin reaction zone,
yield slowly ahead of the zone, and not at all behind the
dH zone. A point-source approximation in both FP and
5= 0 9) SHS exploits the narrowness of the reaction zone.

Thes-function sharp-front approximation of the re-
whent > 1y, expressing conservation of enthalpy inthe action propagation in solid fuel combustion was stud-
system. Thermodynamics of the problem dictates that ied in [14] in the case wher « 1. The sharp-front
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approximation and the strength of the heat source term
follow from the analysis similar tfl5].

In [12], a sharp front approximation is combined
with the step function kinetics to describe frontal poly-
merization. To start, the authors replaced the Arrhe-
nius kinetics with a step function of height equal to the
maximum of the Arrhenius function, as [&6]. The
step-function kinetics was chosen such that its integral
value on [y, Tp] approximately equaled the integral
value of the Arrhenius kinetics function on the same
interval. Generally,T;, and, hence, the step function
can be functions of time. IfL2], only the sharp-front
approximation was considered, under the assumption
that the dimensionless parametavas small.

Here we will consider a diffused versi¢h7] of the
step-function kinetics as one of two approximations
to compare with the full kinetics ofL2) and (13)In
addition, we use Arrhenius kinetics with a cutoff, as in
the solid combustion contekt8].

Approximate kinetics in the literature and in this
paper recast the problem such that traveling-wave so-
lutions exist. These lead to bifurcation and stability
analyzes.

In gasless combustion, a solution exhibiting a pe-
riodically pulsating, propagating reaction front arises
as a Hopf bifurcation from a solution describing a uni-
formly propagating front if14]. The bifurcation pa-
rameter is the Zeldovich numbé&; defined in(11).
Amplitude, frequency, and velocity of the propagating
front were determined in nonlinear analysis. It was also
demonstrated analytically that the mean velocity of the
pulsating frontis less than the velocity of the uniformly
propagating front. A similag-function approach was
also adopted ifil9] to perform a stability analysis.

Linear stability analyses for FP appear in a number
of papers, e.d12]. For a weakly nonlinear analysis in
this context, seg20].

Various works have explored numerically the dy-
namics of models with approximate kinetics, for both
SHS and for FP. For instance,[@1], Arrhenius kinet-
ics with a cutoff was used to observe chaotic pulsations,
following a number of period-doubling bifurcations.

A free-interface problem for the point-source model
in combustion has been studied numerically{22].

For a sufficiently large, the work showed transitions
to chaos via a period-doubling solution and highly ir-
regular relaxational oscillations. Increasing the bifur-

cation parameter lead to enhanced fluctuations and aor

149

reduction of the average velocity of propagation. The
authors attributed a lack of sequential secondary bifur-
cations to the difference between the point-source and
distributed-kinetics models (as j@1]). However, the
entire spectrum of behavior for distributed kinetics was
found later for the point-source model[i23].

The literature also contains numerical studies of the
full Arrhenius kinetics. For example, the propagation
of a pulsating front of an exothermic reaction in a con-
densed phase was studied numerically2i] for the
model (1) and (2) The stability of the reaction front
was determined to depend on a single non-dimensional
parameter

a=917Z"1-25 (17)

It was shown that itx > 1 then the stationary re-
action is stable. Ix < 1 then the reaction propagates
in a pulsating regime. It was specifically noted that the
structure of the front oscillations depends @ronly
and not onZ or ¢ separately. Additional bifurcations
were observed ag decreased further away from the
threshold of stability; the average velocity of the front
propagation was observed to decrease with

In [25], period doubling in gasless combustion lead-
ing to chaos was demonstrated numerically, depending
on the values of activation energy and the heat of reac-
tion. Doubling of up to the period eight was reported
with regions of existence of each consecutive solution
getting narrower and narrower.

In this paper we compare and contrast the computed
dynamics of three models: two with different forms of
approximate kinetics and one with the full Arrhenius
kinetics. In the first approximation, a cutoff function
multiplies the Arrhenius kinetics to eliminate bulk re-
actions ahead of the advancing front. The cutoff func-
tion in terms of dimensional variables is

o) = tl) T(x.) < (1+8)To, a8)
. T(x, 1) > 1+ 8)To.
Heres = 104, which is small enough to ensure that
the reaction is switched off well ahead of the front.
To formulate the step-function-kinetics mod&v]
we assume thatis small; then the system of Eq42)
and (13)reduces to

oM

= —zmefT-h) (19)
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oT 82T 2(r-1) value near the endpoint of the domain in the unreacted
o a2 +ZMe : (20) reagents zone. Note that, mathematically, the value of
monomer concentratiod is always nonzero. We will
Next we replace the Arrhenius kinetizeeZ("—1 in choose a threshold monomer concentrativand as-
(19) and (20)py the step-function sume that the polymerization process is finished once
1 the monomer concentration falls below
K(T) = I'<Tp J 1) The average velocity of the front is calculated by

’ Z
zeZb ) 17,1,
Ax

whereT, is the temperature of the mixture immediately V=Aaay
upon the completion of the reaction (or, analogously,
the temperature at the product end of the reaction where Ax is the distance between grid poinist is
zone). Since this temperature is, generally, the high- the size of the time step, arais the number of grid
est temperature of the mixture, within this model the intervals traveled through by the front iar seconds.
reaction is assumed to occur in the temperature rangeNote that it may take multiple, say time steps for the
[T — (1/2). Tp]. Unless the front is a steadily propa- front to travel through one grid interval. In that case,
gating wave, the maximum temperature inside the test we havez = 1/n.
tube and, therefore, the shape of the kinetics function  Unless specified otherwise, throughout this section
depend on time. we will assume that the parameters

Here, we will assume thaffy(r) = T'(xp(2), 1), .
where xp(z) is a point at which tF;1(e) mon(orrfe)r gon- q = 3324 K°L/mol, x = 0.0014 cn?/a
centration falls below a prescribed threshold value x =1s71, Tp = 500 K°,
M (xp(), t) = B. The appropriate value of the small
constant parametg > 0 is found to bed =2.E—2 by are fixed; then the state of the system is completely de-
numerical experiment. termined once the values @fande are specified. The

length of the spatial domain (test tube) in our compu-
tations varies from 4 to 87 cm, depending on the char-

2. Numerical simulations acteristic time scale of the process of interest.
2.1. Numerical method 2.2. Code validation: role of boundary conditions
The governing system of dimensional Ec&) and In this section, we validate our code by compar-

(4) is solved numerically using a finite difference ing its predictions with existing numerical results and
method with implicit time integration. The nonlinear by demonstrating that the computed solution has the
reaction terms in the equations are linearized using conservation properties predicted by the underlying
Newton’s method. We apply Dirichlet boundary model.
condition T(L, 1) = Ty, WhereT;, is defined in(10), We begin by showing that our code reproduces the
at the ignition end of the domain for a short period known, numerically determined types of FP and SHS
of time to initiate the reactiof6), and then switch to ~ dynamics over a range @ values for the Arrhenius
the homogeneous Neumann boundary conditign ~ kinetics Fig. 1) as have been reported previously by
Numerical experiments have demonstrated that the [10,25] and others. The front velocity profiles pre-
long-term behavior of the reaction-diffusion equation sented inFig. 1 were computed using the same data
system studied in this paper is not affected by the and are in excellent agreement with the resulfd.6f.
application of the Dirichlet boundary condition during In these computations the values of the pre-exponential
the initiation stage. factork were adjusted

At each time step, the reaction front is defined as the
first grid point, going from left to right, at which the
concentration of the monomer drops below 50% of its k = 1.43s 1 whenZ = 8.05,

k = 1.07s YwhenZ = 7.25,
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Fig. 1. Possible modes of propagation of the polymerization front.
k =0.25s5 1whenZ = 9.67, ber reacheg = 9.67, our results demonstrate period
1 doubling. Chaos begins to develop as the Zeldovich
k=6.03s"whenZ = 1208 number is increased further.
to match those iffiL0]. Fig. 2shows the results of another test of the valid-
Using the values of considered irFig. 1and(17). ity of our numerical method. To initiate the reaction,

the threshold values of Zeldovich number can be found Wealwaysapply the Dirichlet boundary conditions for
to lie betweerZ = 8 andZ = 8.41. Hence, of the four  the first 400s during the simulations. Following this

cases, the traveling wave solutions are expected to pePeriod, the Dirichlet conditions are either retained for
stable only wherZ = 7.25. Indeed, wher = 7.25, the duration of _ti_me or are switched to_the adiabatic
following the velocity spike corresponding to the onset Neumann conditions once the front begins to advance
of frontal mode, the front settles into propagating at a N the self-propagating mode. o
constant speed. Whéhis increased up t& = 8.05, According to (9), the enthalpyH defined in (8)

the front propagates in the pulsating mode following should be preserved under adiabatic conqmqns on
the brief transition period. When the Zeldovich num- the temperature. The plots &f are shown inFig.
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7=9.6, £=0.05 little numerical dissipation (dashed line dfig. 2).

' = When the Dirichlet boundary condition allowing
for the heat exchange between the test tube and the
environment is maintained for the duration of time, the
7 value ofH begins to level off around= 1000 s (solid
line on Fig. 2) indicating the essentially adiabatic,
self-sustaining nature of the reaction.

Our numerical observations support this conclusion;
7 beyond the transition stage, the front propagation dy-
namics are essentially indistinguishable for Dirichlet
. and Neumann boundary conditiorisd. 3) although,
: ' : > = - g as indicated byFig. 2, the temperature and monomer

0 1000 2000 3000 4000 c .
Time. s distributions themselves are not necessarily the same.

10080

10060

10040

n 1 n
H, cmdeg K

10020

10000

Fig. 2. EnthalpyH vs. time when either the Dirichlet boundary con- ~ 2.3. Arrhenius kinetics versus non-smooth

dition on the right side of the tube is applied at all times (solid line)  kinetics: long-time stability of polymerization front
or Dirichlet boundary condition on the right side of the tube is ap-
plied for the first 400 s and then switched to a Neumann boundary

condition (dashed line). Here we investigate the effect of the slow, low-

temperature bulk reaction in a mixture of reagents far

ahead of the polymerization front on the velocity and
2 for both Neumann and Dirichlet boundary condi- asymptotic stability of FP.
tions applied during front-propagating phase when For the Arrhenius kinetics, the reaction although
Z = 9.67 ande = 0.041. In the former case (dashed very slow still does occur at low temperatures. In solid-
line onFig. 2), the Dirichlet boundary condition was state combustion the flame front propagates extremely
applied for the first 400 s on the reaction (right) side fast—a front has to advance by distances on the or-
of the test tube. During this period, a substantial der of thousands of meters—for this bulk reaction to
amount of heat is supplied into the system as is evident have any appreciable effefd]. However, in the case
from the rapidly increasindd. On the other hand, of frontal polymerization the propagation speeds are
once the boundary condition is switched to adiabatic relatively low and the bulk reaction in the initial mix-
Neumann conditioniH becomes independent of time ture becomes significant if the long-time behavior of
indicating that our numerical method exhibits very the polymerization front is important. Since the long

7=9.6, e=0.05 7=9.6,£=0.05
5 T T T T T : T - T T 5 T T T T T T T T T
A 1= 4T 1=
= i 118
L 45 sl ] 3
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Fig. 3. Frontvelocity vs. time when either Dirichlet boundary condition on the right side of the tube is applied at all times (left graph) or Dirichlet
boundary condition on the right side of the tube is applied for the first 400 s and then switched to a Neumann boundary condition (right graph).
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time scale for the low-temperature reaction is on the
order of €4, one can employ the method of multiple
time scales in{12)—(16)to recover the long time scale
dependence of the front velocif20]. This method is

identical to quasi-steady analysis of time dependence -

of the traveling wave velocity if26].

Since they were developed mostly for combustion-
type problems, the majority of popular approximations
of the Arrhenius kinetics incorporate some form of
cutoff that sets the reaction rate to zero for temperatures
below a certain threshold. For example, [it6] the
reaction rate is assumed to vanish below the reaction
temperature; i{18] the Arrhenius kinetics function
is multiplied by a cutoff function to switch off the
reaction at distances that exceed a certain critical value
ahead of the front to model the fact that the reaction
is insignificant in this region. All bulk reactions are
clearly neglected within sharp-front approximations
(e.g.[14]) as well since all reactions are reduced to a
point-source on the interface.

The bulk reaction raises the temperature and lowers
the monomer concentration ahead of the advancing
polymerization front, thereby having a stabilizing ef-
fect on its propagation. Indeed, from the point of view
of the stability criterion(17), since the temperature
behind the front remains equal @, and the non-
dimensional Zeldovich numbef is proportional to
the monomer concentration in the initial mixture of
reagents, the parametedoes not change on the long
time scaler, while the parameteZ decreases with,
eventually falling below the stability threshold. In order
to measure the influence of bulk reaction on the value of
the Zeldovich number that is “seen” by the advancing
front, we introduce the effective Zeldovich number

gM(a, E

22
RyT2 (22)

Zeit() :=

where the poina lies ahead of the front far away from
the reaction zone. When the heat diffusion is relatively
slow, we expect thaZqs is mainly influenced by bulk
reactions.

We compare the results of simulations for the full
Arrhenius kinetics, the Arrhenius kinetics multiplied
by a cutoff function(18), and step-function kinetics
(21).

First, let Z = 7. The position and velocity of the
polymerization front for the three different types of
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Fig. 4.
netics.

Position of polymerization front for the various types of ki-

kinetics are depicted irigs. 4 and 5 respectively.
Observe that, initially, all three kinetics lead to the
uniformly propagating polymerization fronts advanc-
ing with approximately the same velocities. Although
the dynamics of the fronts corresponding to either of
the modified kinetics does not change with time, the
front corresponding to the Arrhenius kinetics acceler-
ates, and the frontal polymerization is completed by
t ~ 3300 s (here we assume tmtdefined in Section
2.lis equal to 1.E-3, that is the polymerization is con-
sidered to be complete once the concentration of the
monomer falls below 1.E3).

The consecutive positions of the reaction front at
equally spaced times for both the Arrhenius kinetics
and the Arrhenius kinetics with the cutoff are shown in

Z=7,e=0.05
0.05 —

— Arrhenius kinetics
++++ Arrhenius kinetics w/cutoff
Step-function kinetics

0.04

0.03

0.02

Front velocity, cm/s

1 I
3000 4000

Time, s

1 |
1000 2000 5000

Fig. 5. Velocity of polymerization front for the various types of ki-
netics.
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Fig. 6. Snapshots of the monomer profiles at equal time intervals for the Arrhenius kinetics (left) and the Arrhenius kinetics with cutoff (right).
The polymerization front propagates to the left.

Fig. 6. Note that, in the system governed by the Arrhe- nius kinetics with the cutoff. (We use the envelopes for
nius kinetics with the cutoff, the polymerization front ease of visualization since both quantities are rapidly
propagates at the same rate and the concentration of thevscillating on the long time scale.) As the initial con-
monomer remains constant in the mixture of reagents dition for these simulations, we used a profile that is
ahead of the front. On the other hand, the monomer “close” to the profile of the uniformly propagating trav-
is being depleted in the region ahead of the advancing eling wave corresponding t6 = 8.089 ande = 0.05.
frontin the system governed by the Arrhenius kinetics; Clearly this profile is unstable, as demonstrateBim
the polymerization in this system occurs via both the 9by the initial increase in the amplitude of velocity os-
bulk and the frontal polymerization. The polymeriza- cillations (cf.[24]). The front pulsations corresponding
tion front exists throughout the polymerization process to the Arrhenius kinetics with the cutoff then stabilize
and propagates at an increasing speed. The effectiveand retain the same amplitude throughout the simula-
value of the Zeldovich number shown &tig. 7 de- tions; however the amplitude of the front pulsations for
creases with time for the Arrhenius kinetics and re- the system governed by the Arrhenius kinetics mono-
mains unchanged for both the Arrhenius kinetics with
a cutoff and step-function kinetics.

Next we consider frontal polymerization systems Z=7,6=0.05
governed by the Arrhenius kinetics and Arrhenius ki- ' ' ' ' ' T ' '
netics with cutoff wherZ = 8.089 ande = 0.05. Ac-
cording to the stability criterior{17), the uniformly

efl

— Aurrhenius kinetics

propagating fronts in such systems should be unsta- 5[ |77 {mhenius kinelics wicutoll i

Step-function kinetics

ble. Indeed, both the front velocity and the front tem-
perature for the Arrhenius kinetics exhibit oscillating ]
profiles as shown iRig. 8(cf. Fig. 1). As the front tem- 3k .
perature we use the temperature of the mixture when [ ]
the concentration of the monomer falls below 2% of
its initial value; this choice is further elaborated upon  '[* ]
in [17]. However, if the simulation is run for signifi- 0 . L . 1 . L . L
cantly longer time, long-time-scale behavior emerges ~ * 1000 2000 3000 4000
as evidenced blyig. 9, showing the upper and lower en-
velo-pes of the front VEIOCIW and. the. front temperature Fig. 7. Effective value of the Zeldovich number for the various types
profiles for both the Arrhenius kinetics and the Arrhe- o kinetics.

Effective Zeldovich number, Z

Time, s
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Fig. 8. Front velocity (left) and front temperature (right) profiles for the Arrhenius kinetics.

tonically decreases with time. If the computations are characterized by the increased amplitude of pulsations
run for a longer time, the front pulsations die down, even though the appropriate restriction of the travel-
leading to the uniformly propagating polymerization ing wave solution t¢3) and (4)was used as the initial
front that will eventually disappear through the combi- data. The same benchmark was used24] to dis-
nation of the bulk and frontal polymerization discussed tinguish between stable and unstable front dynamics.
in the previous example. We attribute this apparent discrepancy to the approx-
The stabilization of the polymerization front be- imate character of the criteriqd 7). Observe that the
comes even more pronounced as Zeldovich nurdber amplitude of front pulsations remains the same for the
decreases toward the stability threshdtiy( 10. The systems governed by the Arrhenius kinetics with the
values ofZ ande in Fig. 10correspond tax = 1.005 cutoff and step-function kinetic$={g. 11), while pul-
and the criterion X7) indicates the stability of a uni-  sations essentially disappear in the system governed
formly propagating solution ) and (4) The system, by the full Arrhenius kinetics. Hence, the instability
however, is still clearly unstable with respect to front criterion (17) used in[24] may fail on the long time
pulsations, as the initial stages of front propagation are scale.
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> e g : 2 : g
= 4 3
. i) [ 4 2
2 g
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0.015+ 1 g 500 9 5
= ]
s <
L 4 =
E o . s
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0.01 ~h.”"'_-:'_ll:-_'-\-‘_"T'_'_T—‘_‘r'_'_. ''''' vl i wihd L 1 L I L | L 1 L 1
’ 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Time, s Time. s

Fig. 9. Upper and lower envelopes of the front velocity (left) and the front temperature (right) profiles for the Arrhenius kinetics and the Arrhenius
kinetics with cutoff.
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Fig. 10. Upper and lower envelopes of the front velocity (left) and the front temperature (right) profiles for the Arrhenius kinetics and the
Arrhenius kinetics with cutoff.

Fig. 12shows the evolution af s for systems with bulk rather than from heat generated by the frontal
Z = 8.05 ande = 0.05. The effective Zeldovich num-  reaction.
ber decreases in a system governed by the Arrhenius As another test of this hypothesis we use the fol-
kinetics and remains constant in systems governed bylowing numerical experiment. We choose a large time
discontinuous kinetics. We have also plottedrig. 12 t = 4400 s and consider a system governed by the
the evolution ofZes; for a system governed by the Ar-  Arrhenius kineticswith a cutoff (all bulk reactions
rhenius kinetics in the absence of heat diffusion. Note ahead of the front have thus been switched off) with
that the curve forZgs for this system coincides with M (x, 4400) andrl'(x, 4400) as initial conditions.
the curve for the system with Arrhenius kinetics when The evolution of velocity envelopes for this system
the thermal diffusivityx # 0 thus indicating that the is presented irFig. 13 The system governed by the
time scale for heat diffusion is sufficiently long so that Arrhenius kinetics with a cutoff and initial conditions
the heat from the frontal reaction does not affect the M(x, 0) andT (x, 0) is characterized by velocity pulsa-
regions sufficiently far ahead of the reaction zone. The tion of constant amplitudd={g. 11). On the other hand,
stabilizing phenomenon results from reactions in the velocity pulsations decay in the system governed by

Z7=8.05, e=0.05 Z=8.05,£=0.05
. T : T ; T ! T ¥ T ! 83 T T T T T T . T T T
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| s / : S o]
AAAAA uppet Eivelope, \'Icp—lu_l!cllun — = Arrhenius kinetics, k=0 cm’/s ™
upper envelope \vl'culu]_f. 1 82r -+« - Step-function kin-c’tiu: i B
e lower velope wicutott <z — = Arrhenius kinetics w/cutoff 1 "g
0.03 - 1 E =
.................................................................................. o 31k | 2
= ' =
:. '5 ';
: =]
0.02 H 1= 2
- m e - - . = °
i 1% I 1%
_______________________________________________________ S
0.01 !L 1@ 2
79 4 o
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1 @
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Fig. 11. Upper and lower envelopes of the front velocity for the Fig. 12. Evolution of the effective Zeldovich nhumber for various
Arrhenius kinetics with cutoff and step-function kinetics. types of kinetics.
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Fig. 13. Upper and lower envelopes of the front velocity for the
Arrhenius kinetics with cutoff and step-function kinetics.

the Arrhenius kinetics with a cutoff wheM (x, 4400)
and T'(x, 4400) are used as initial data. We conclude
thatZef passes the stability threshold for the uniformly
propagating reaction wave for some (0, 4400).
Observe that the amplitude of velocity oscillations
decreases slightly faster for the system with Arrhenius
kinetics than for the system with Arrhenius kinetics
with a cutoff Fig. 13 due to the presence of bulk re-

157

sequence presented kig. 1 for the Arrhenius kinet-
ics. In all cases the type of dynamics depends on val-
ues of nondimensional parameters of the problems—
and the Zeldovich numbet. In the previous section
we have demonstrated for the Arrhenius kinetics that
the reaction cannot be considered to occur strictly in a
frontal mode, as the bulk reactions are always present;
the propagation, however, can be approximated as be-
ing frontal on intermediate time scales, since the bulk
reactions are slow. Here we show that, in fact, polymer-
ization can be considered to be purely frontal only for
uniformly propagating reaction waves in systems gov-
erned by kinetics that ignore low-temperature bulk re-
actions. Thatis, for Zeldovich numbers beyond the first
critical threshold (pulsating mode) theavaysexists
a non-frontal component of the dynamics. In particu-
lar, we show that the monomer profile periodically be-
comes non-monotone in the regions experiencing high
front acceleration, and pockets of unreacted monomer
form behind the rapidly advancing front. These pockets
later disappear via bulk polymerization.

We begin by considering systems governed by the
full Arrhenius kinetics when the value of the Zeldovich
number exceeds the traveling wave stability threshold.

actions that suppress the effective Zeldovich number We setZ = 10 ande = 0.05; then the front propagates

even further.
Note that the long time scale for our choice of pa-

via a doubly-periodic pulsating mode (&fig. 3).
In this regime, the polymerization front evolves by

rameters is on the order of 1 h, and the average front constantly cycling through the series of three distinct
velocity is approximately 50 cm/h. The amount of time motions. First, the front slowly diffuses into the fresh
necessary for stabilization to become pronounced de- mixture of reagents; this process is followed by a rapid
pends on the size of the test tube and parameters of‘sharpening” of the front, which then quickly propa-
the problem—the closer is the system to the stabil- gates while slowing down and widening at the same

ity threshold, the more significant the stabilization ef-
fect of the bulk reaction will become. For the values
of parameters irFig. 10the decay in the amplitude

time (Fig. 14).
The interesting feature of this type of propagation is
that its “sharpening” stage is very rapid and appears to

of velocity/temperature oscillations becomes apparent occur in a bulk regime, since the monomer is depleted

in ~20 min—the time comparable to the duration of a
typical frontal polymerization experiment.

2.4. Solution features for distributed kinetics:
frontal versus bulk effects

2.4.1. Pockets of unreacted monomer

simultaneously everywhere within a wide reaction
zone. Furthermore, the reaction rate remains higher in
the front of the reaction zone leading to the appearance
of a pocket of unreacted monomer at the tail of the front;
the front subsequently detaches from the monomer
pocket. The pocket persists for several seconds
leaving it far behind the rapidly advancing polymer-

The systems governed by various one-step kinet- ization front and then disappears via bulk polymeri-

ics discussed in this paper exhibit a similar hierar-
chy of intermediate-time solution dynamics that range
from traveling wave propagation to a chaotic pulsa-
tion mode[14,10,24,12,17]The dynamics mirror the

zation.

The successive profiles of the monomer and temper-
ature concentrations shownhig. 14demonstrate the
dynamics of the monomer pockets; the “zoomed-in”



158 S.A. Cardarelli et al. / Physica D 206 (2005) 145-165

7=10, €=0.05 Z=10,e=0.05

8 77— 700 . r . | .
— =108 s r — t=108s 1
vy [ =118s =N R =118 5
| =128 s g 600 - =128 s -

6 AR W PR =138s | 4 = - 1=138s
I — 1=1404s =} F — t=1404s 4
i ——— 1=141s k=) ——— (=145 o
1[ i 1=148 s E 500 - 1=148 s %

4r |l li ] § i g
[ = =
| i g 400 é
P! 5] | £

s L | 1 £ 5}
[ Q =
VoY £ 300}
| \ =
N —
\ ~,

PR I NV NP W = SRS N I 200 - ! . 1
0 02 0.4 0.6 0.8 1 1.2 1.4 1.6 -1 0 1 2
X, cm X, cm

Fig. 14. Pockets of unreacted monomer behind the polymerization front: snapshots of monomer concentration and temperature profiles. The
front advances to the left.

version ofFig. 14is depicted inFig. 15 The plots of whether the evidence of their existence was numerical
both the position of the front (defined as in Section or experimental.
2.1) and the position of the secondary maximum of Before trying to uncover the reasons for the exis-
the concentration profile shown iRig. 16 illustrate tence of the monomer pockets, we want to rule out the
the periodic nature of the effect. Note that for values possibility that they are simply numerical artifacts re-
of time for which two graphs ifrig. 16 coincide, the sulting e.g. from numerical under-sampling. We have
concentration profile is a monotone functionxoéind already pointed out that our code exhibits very little
the secondary maximum does not exist. numerical dissipation—this was indicatedfeig. 2for

In pulsating propagation, the appearances of the enthalpyH of the system defined b{g). Further-
monomer pockets and the temperature spikes in themore, although our algorithm is not adaptive, since the
mixture appear to be correlated (Eig. 14). Note that original problem was posed in one dimension, simple
the existence of pockets of reagents behind the combus-grid refinement throughout the domain is not too com-
tion front was alluded to if24], however, itisnotclear  putationally expensive.
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Fig. 15. Pockets of unreacted monomer behind the polymerization Fig. 16. Positions of the polymerization front and the secondary
front: zoomed-in snapshots of the monomer concentration profile. maximum of the concentration profile.
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Fig. 17. Comparison of computed monomer concentration and temperature profiles for various time steps and grid sizes.

The calculations of temperature and monomer pro- lar, especially whenr > 0.95 where the influence of
files are shown irFig. 17 for various time steps and heat diffusion is, therefore, the weakest. Further, the
mesh sizes. Except for the casa =5.E—4, the re- monomer and the temperature distributions-at138 s
sults are indistinguishable—qgrid refinement clearly in- appear to be such that, in the absence of heat dif-
dicates numerical convergence and all sharp featuresfusion, the regions with higher monomer concentra-
are resolved and grid independent. In fact, the number tion experience complete conversion faster than the
of grid points in the regions of high gradients never falls regions with lower monomer concentration. Although
below 100. Even whenx = 5.E—4, the solution pro-  this might appear as an indication of a higher tempera-
files are essentially the same, except for a small time ture in monomer-rich regions of the gradient zone when
shift. We conclude that non-monotone monomer dis- ¢ = 138s, we will soon see that it is not necessarily
tributions with the regions of non-zero monomer con- so.
centration behind a polymerization front correspond to Consider again the system of ODEs describing the
a true solution of the governing system of equations. evolution of temperature and monomer concentrations

in the system without heat diffusion witi (x, ) and

T(x, ) as the initial data. Then Eq€3)—(5) take the
2.4.2. Rationale for the existence of pockets of

unreacted monomer
We begin this section by considering the follow- 2
ing numerical experiment. As is shown fiig. 14the !
monomer concentration profile at= 138 s is mono- :
tone. Considerthe monomer concentration and thetem- '3 i
perature profiles when= 138s as initial conditions i
for a polymerization system in which the heat diffu- |
sion is negligible £ = 0). Then the governing system i i
|

|

l

|

7=10, e=0.05
y =T & [ < [ *

— 1=138s
- 1=1404 5, k=0 cm 2/s
== 1=140.4 5, k=0.0014 cm%/s|

of Egs.(3)—(5) reduces to a coupled system of ODEs
with the spatial coordinateas parameter. This system 0.5 -
can be solved either by settirg= 0 in our code or by

1
Monomer concentration, mol/L

using Maple. The solution profile far= 1404 s ob- cp g opoabahs
tained with our code whern = 0 is presented ifig. 05 06 07 08
18.

. Th,e m(_)nor,ner pmﬂles for systems V\{Ith .and WI.thQUt Fig. 18. Comparison of monomer concentrations in systems with
diffusion in Fig. 18 appear to be qualitatively simi-  and without heat diffusion.
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M (x,1) = M(x, 1), T(x, 1) = T(x, t).

_ Since the enthalpy density(x,7) = gM(x,7) +
T(x,7) is conserved

h(x,7) = gM(x, 1) + T(x, 1) = h(x, 1),

pointwise inx, we can expres$ in terms of M and
reduce the syster(23) to a single ODE that can be
solved to obtain an implicit equation

=

~ o —1-1/e | = Ty
r=ke [E' {em(x, 0 — ai(x.7)

= ]

for M(x,7) where Ei() is the exponential integral.
Viewed differently, given the initial datd'(x, r) and
M (x, t) at the timet, the Eq.(24) determines the time
necessary to reach the prescribed monomer concentr
tion M at the pointx in the absence of heat diffusion.
Since the monomer concentration in our mathematical
model never vanishes, we will postulate that the con-
version process at the poirtis complete when the
monomer concentration atfalls below some small
prescribed valuento be chosen later (cf. Secti@nl).
Substitutingm for 4 into (24) we obtain aconversion

Tp

timefunction
e ) = ke Ve | Ei =T
= e (B ) -8

o )

We will use the functiori(x, ) to estimate the con-
version time in systems where the heat diffusion is
small but not negligible.

Consider again the polymerization process when
Z = 10 ande = 0.05 and suppose that=1.E—3—for
given values o¥ ande this threshold is sufficient to re-
solve the fine monomer profile features.Aig. 19we

T
€T (x,1)

qToM(x,7)
eh(x, N)(h(x, 1) — gM(x, 7))

Th
€T (x,1)

qTom
eh(x, 1)(h(x, t) — gm)

” 4k~ LelTo-he.)/eh(r) [Ei {

H 4k~ Le(To—h.0)/eh(x.r) [Ei {

S.A. Cardarelli et al. / Physica D 206 (2005) 145-165

t = 1255, the “wide” polymerization front slowly “dif-
fuses” into the unreacted monomer. Whega 141s
the front is at the final stages of the front sharpening
process, and when= 157 s, the front is in the fast
propagation regime.

As indicated by dimensionless PDES) and (13)
for smalle and T < 1 (dimensionall < Ty), the re-
action slows down with an increasirgywhen T is
away from 1. On the other hand, the reaction accel-
erates whef is sufficiently close to 1. If initially the
front is very sharp and the temperature in the reac-
tion zone is not too high, then for largewe expect
thatthe monomer concentration should decrease slowly
in the zone adjacent to the front containing the fresh
monomer. Hence, the frontwidens via its slow diffusion

!

into the monomer. This process is accompanied by the
slow rise in the temperature in the same region. This
results in the monomer concentration and temperature

qToM(x, 1)
eh(x, )T (x, 1)

(24)

aprofiles depicted irfrig. 19for r = 125s.

Note that forr = 125 in Fig. 19 the temperature
at the point of the minimum conversion time is lower
than the temperature at the point of the maximum con-
version time. The concentration of unreacted monomer
near the point of minimum conversion time is higher
than the concentration near the point of the local max-
imum conversion time. This can be explained by the
fact that although the initial temperature/reaction rate

qToM(x, 1)
€h(x, )T (x,t) }

(25)

can be lower for a point with higher monomer concen-
tration, the amount of heat released during the reaction
is higher for the regions with higher monomer concen-
tration leading to faster conversion times.

The combination of reaction and heat diffusion in
the direction of the unreacted monomer zone raises the
temperature of the reagent in the part of the reaction

present the temperature, monomer concentrations, andzone where the concentration of the monomer is close

conversion time profiles at three different times. When

to its initial value. In the absence of heat diffusion,
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the resulting large difference in the local maximum
and minimum conversion times for= 125 s sets the
stage for the formation of a monomer pocket at about
t=130s.

Near the point of the minimum conversion time for
t = 1255, the reaction rate is high by definition. Corre-
spondingly, the heat release begins to dominate the heat
diffusion. Further, the heat flux toward the cooler, unre-
acted monomer exceeds the flux toward the products of
the reaction. We conclude the plot of conversion time
for r = 125 s should qualitatively predict the structure
of the solution forz > 125s, as is confirmed by the
monomer profile for = 141 s inFig. 19

Fig. 19shows that the reaction immediately to the
right of x = 1 appears to proceed at about the same
constant temperature at= 141 s as at = 125s sug-
gesting lack of substantial heat diffusion. Hence, the
conversion time as predicted §94) should be fairly
accurateFig. 18 confirms the appropriateness of us-
ing the adiabatic model near= 1. The actual conver-
sion time for the monomer pocket should be somewhat
lower due to the heat diffusion.

The above discussion implies that the monomer-to-
polymer transition betwean= 125 s and = 141 soc-
curs essentially via the bulk mode; beyong 141s
it is via the combination of the bulk and the frontal
mode until the monomer pocket disappears completely
at some time before= 157 s. The evolution then pro-
ceeds purely in the frontal mode until the sharp front

6

M, mol/L.
.

500F
v
op 4501
(9]
= 400
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= 20r
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Fig. 19. Temperature, monomer concentrations, and conversion time Fig. 20. Temperature, monomer concentrations, and conversion time

profiles in a system wittZ = 10 ande = 0.0

5.

profiles in a system witl = 7 ande = 0.05.
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Fig. 21. Pockets of unreacted monomer behind the polymerization

front propagating via a periodic pulsating mode in a system gov- Fig. 22. Pockets of unreacted monomer behind the polymerization
erned by Arrhenius kinetics: zoomed-in snapshots of the monomer front propagating via a periodic pulsating mode in a system governed
concentration profile. by Arrhenius kinetics with a cutoff.

quickly reaches the regions with lower temperature  An important observation that follows from the
and slows down. The propagation mechanism then re- above discussion is that the polymerization process in
peatedly cycles through the same modes as outlineda doubly-periodic pulsating propagation, efg—= 10,
above. € = 0.05 considered throughout this sectioannotbe
Because of the presence of heat diffusion, the small described by using a point-source kinetics such as in
dip in the conversion time far= 157 s inFig. 19does [14]. Features like monomer pockets will never appear
not lead to the formation of a monomer pocket. The since all bulk reactions are neglected.
adiabatic model predicts the differences in conversion  Next we will examine whether non-monotonicity
time between the head and the tail of the front. How- of monomer concentration profile is characteristic of
ever, the heat diffusion levels off these differences. In- other types of pulsating propagation for Arrhenius and
deed, the same effect is indicated for the system with other types of distributed kinetics.

traveling-wave-type front{ = 7) as evidenced byig. First, consider a polymerization system governed by

20. Arrhenius kinetics whe = 8.5 ande = 0.05. On an
- Z=8.05, €=0.05 5 7=8.8,£=0.05
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Fig. 23. Pockets of unreacted monomer behind a periodic and doubly periodic pulsating polymerization front in a system governed by step-
function kinetics.
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intermediate time scale, a polymerization front in this
system propagates in a periodic pulsating mode. The
monomer pocket formation can still be clearly observed
in this case Fig. 21); the concentration of monomer
in the pocket is, however, several orders of magni-
tude lower than the concentration in similar pockets
in doubly-periodic propagationF{g. 15. We con-
jecture that the maximum concentration of monomer
within a pocket rises with an increase in Zeldovich
number.

When a polymerization system with = 10 and
€ = 0.05 is governed by the Arrhenius kinetics with a
cutoff (18), the monomer dynamics at an intermediate
time scale is essentially the same as for the Arrhenius
kinetics Fig. 22. The formation of monomer pockets
behind a polymerization front can also be observed in
systems governed by the step-function kinetics, both
in a periodic pulsations and in a doubly-periodic pul-
sations modeKig. 23. Note that non-smoothness of
monomer concentration profileskig. 23is due to the
discontinuous character of step-kinetics. e

In summary, we demonstrated that all distributed
kinetics studied in this paper that are known to exhibit
the hierarchy of modes of front propagation—traveling
wave, periodic pulsating, doubly-periodic pulsating,
etc.—cannot be fully described in terms of frontal
polymerization alone beyond the steady traveling wave
regime. The bulk mode of monomer conversion be-
comes important when a wide front evolves to a sharp
front resulting in a formation of a monomer pocket
that subsequently disappears via a bulk polymeriza-
tion. These effects cannot be captured in point-source Qe
kinetics where the bulk reaction is ignored. Position,cm = &

Further, note that for pulsating fronts the assump- -2t
tion that the width of the reaction zone is of ordes Fig. 24. Monomer concentration, conversion time, and temperature
generally invalid Fig. 14). as functions ok andt.

We conclude this section by plotting the monomer
concentration, temperature, and the conversion time front—the right-most pocket centered nea& 1.1 cm
when Z = 10 ande = 0.05 as functions of both time  disappears around= 175 s when the front is located
and spatial coordinatd={g. 24). The two-dimensional ~ at aboutr = 0.5 cm. The related local maxima of con-
figures presented throughout this section correspond toversion time and the temperature spikes can be clearly
sections of these plots by planes perpendicular to the seen on the respective plots.
time-axis. Note that the perspective for the temperature
is different than that for two other plots.

The monomer pockets ifig. 24are represented by 3. Conclusions
small protrusions in the concentration plot pointing in
the direction of time-axis. The monomer pockets sur-  We considered a one-step kinetics model of free-
vive for sufficiently long time to exist well behind the  radical frontal polymerization in which a monomer-
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Temperature, deg K
t

250
-1 200

150 Time, s
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initiator mixture is converted into a polymer via

S.A. Cardarelli et al. / Physica D 206 (2005) 145-165

We have also shown that the assumption that the

a propagating self-sustaining reaction front. We width of the reaction zone is of orderis generally
demonstrated that some of the assumptions that areinvalid for pulsating fronts.

valid in combustion problems may lead to incorrect
results in FP, mainly because of the differences in the

magnitudes of non-dimensional parameters in frontal Acknowledgements

polymerization versus gasless combustion.
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tems modeled with Arrhenius kinetics mainly due to
the influence on front dynamics of slow bulk reac-

tions in the initial mixture of reagents. These reactions ptarences

can be neglected in combustion problems because of
very high speeds of front propagation; however they
may play a role in FP where these speeds are much
slower.

Further, for all types of distributed kinetics consid-
ered in this paper, we demonstrated the existence of
pockets of unreacted monomer behind pulsating poly-
merization fronts. The time evolution of these pockets
proceeds via bulk polymerization. Hence, the “true”
frontal polymerization in systems governed by dis-
tributed kinetics is possible only when bulk reactions
ahead of the front are neglected and only for fronts that
propagate with a constant speed.

Although the systems governed by the full Arrhe-
nius kinetics and its point-source approximations gen-
erally exhibit the same spectrum of solution behav-
ior, the stability thresholds for uniformly propagating
fronts generally differ for different kinetics. The dis-
crepancy may be attributed to the effect of the bulk
reaction that is usually neglected for point-source-type
kinetics. The monomer and temperature profiles in sys-
tems governed by the distributed kinetics have features
that cannot be described by point-source-type kinetics.
In our numerical experiments we observed that the rel-

ative magnitude of these features appears to increase

[1] K.M. Chechilo, R.Y.A. Khvilivitskii, N.S. Enikolopyan, Phe-
nomenon of polymerization reaction spreading, Doklady
Akademii Nauk. SSSR 205 (1972) 1180-1181.

[2] Y. Chekanov, D. Arrington, G. Brust, J.A. Pojman, Frontal cur-
ing of epoxy resins: comparison of mechanical and thermal
properties to batch-cured materials, J. Appl. Polym. Sci. 66
(1997) 1209-1216.

[3] M.F. Perry, V.A. Volpert, L.L. Lewis, H.A. Nichols, J.A. Poj-
man, Free-radical frontal copolymerization: the dependence of
the front velocity on the monomer feed composition and reac-
tivity ratios, Macromolec. Theory Simulat. 12 (2003) 276-286.

[4] Y. Choi, J.K. Lee, M.E. Mullins, Densification process of TiC
nicomposites formed by self-propagating high-temperature
synthesis reaction, J. Mater. Sci. 32 (1997) 1717-1724.

[5] A.G. Merzhanov, A.K. Filonenko, I.P. Borovinskaya, New
phenomena in combustion of condensed systems, Doklady
Akademii Nauk. SSSR 208 (1973) 122-125.

[6] A.G. Merzhanov, B.l. Khaikin, Theory of combustion waves
in homogeneous media, Proc. Energy Combust. Sci. 14 (1988)
1-98.

[7] A.B. Sawaoka, Shock Waves in Materials Science, Springer-
Verlag, Tokyo, 1993.

[8] A.M. Khan, J.A. Pojman, The use of frontal polymerization in
polymer synthesis, Trends Polym. Sci. 4 (1996) 253-257.

[9] W.A. Sirignano, A.G. Merzhanov, L.D. Luca (Eds.), Advances
in Combustion Science: In Honor of Ya. B. Zel'dovich, Amer-
ican Institute of Aeronautics and Astronautices, Inc., USA,
1997.

as Zeldovich number increases. It will be of interest [10] S.E.Solovyov, V.M. llyashenko, J.A. Pojman, Numerical mod-

to examine whether the rise of these features signi-

eling of self-propagating polymerization fronts: the role of ki-
netics on front stability, Chaos 7 (1997) 331-340.

fies the widening discrepancy between the dynamics [11] c A. Spade, V.A. Volpert, On the steady-state approximation

of solutions for distributed and point-source kinetics.
Stated differently, since the point-source kinetics is not
usually obtained from the full Arrhenius kinetics via
a rigorous asymptotic procedure, how accurate is the

in thermal free radical frontal polymerization, Chem. Eng. Sci.
55 (2000) 641-654.

[12] D.A. Schult, V.A. Volpert, Linear stability analysis of thermal

free radical polymerization waves, Int. J. Self-Propagat. High-
Temp. Synth. 8 (1999) 417-440.

point-source kinetics approximation for the values of [13] D.A. Schult, Matched asymptotic expansions and the closure

the Zeldovich number beyond the stability threshold
for the uniformly propagating reaction waves?

problem for combustion waves, SIAM J. Appl. Math. 60 (1)
(1999) 136-155.



S.A. Cardarelli et al. / Physica D 206 (2005) 145-165 165

[14] B.J. Matkowsky, G. Sivashinsky, Propagation of a pulsating [21] A. Bayliss, B.J. Matkowsky, Two routes to chaos in solid fuel

front in solid fuel combustion, SIAM J. Appl. Math. 35 (1978) combustion, SIAM J. Appl. Math. 50 (1990) 437-459.

465-477. [22] 1. Brailovsky, G. Sivashinsky, Chaotic dynamics in solid fuel
[15] G. Sivashinsky, Structure of Bunsen flames, J. Chem. Phys. 62 combustion, Physica D 65 (1993) 191-198.

(1975) 638—643. [23] M. Frankel, V. Roytburd, G. Sivashinsky, Complex dynamics
[16] A.P. Aldushin, S.G. Kasparyan, Thermodiffusional instability generated by a sharp interface model of self-propagating high-

of a stationary flame wave, Tech. rep., Institute of Chemical temperature synthesis, Combust. Theory Model. 2 (1998) 1-18.

Physics, Chernogolovka, preprint, 1978. [24] K.G. Shkadinskii, B.l. Khaikin, A.G. Merzhanov, Propagation
[17] D. Golovaty, On step-function kinetics of frontal polymeriza- of a pulsating exothermic reaction frontin the condensed phase,

tion, SIAM J. Appl. Mater., submitted for publication. Fizika Goreniya i Vzryva 1 (1971) 19-28 (English translation
[18] A. Bayliss, B.J. Matkowsky, Fronts, relaxation oscillations, and in Combust. Expl. Shock Waves 7 (1971) 15-22).

period doubling in solid fuel combustion, J. Comput. Phys. 71 [25] P. Dimitriou, J. Puszynski, V. Hlavacek, On the dynamics of

(1987) 147-168. equations describing gasless combustion in condensed systems,
[19] A.P. Aldushin, S.G. Kasparyan, Thermodiffusional instability Combust. Sci. Tech. 68 (1989) 101-111.

of a combustion front, Sov. Phys. Dokl. 24 (1979) 29-31. [26] Y.B. Zeldovich, A.P. Aldushin, S.I. Khudyayev, Numerical
[20] L.K. Gross, V.A. Volpert, Weakly nonlinear stability analysis of study of flame propagation in a mixture reacting at the initial

frontal polymerization, Stud. Appl. Math. 110 (2003) 351-375. temperature, Fizika gorenija i vzryva 15 (1979) 20-27.



	A numerical study of one-step models of polymerization: Frontal versus bulk mode
	1Introduction
	Physical background
	Mathematical models

	2Numerical simulations
	Numerical method
	Code validation: role of boundary conditions
	Arrhenius kinetics versus non-smooth kinetics: long-time stability of polymerization front
	Solution features for distributed kinetics: frontal versus bulk effects
	Pockets of unreacted monomer
	Rationale for the existence of pockets of unreacted monomer


	Conclusions
	Acknowledgements
	References


