
Reactive Control

Robotics

Reactive systems.. a Beginning

● Once upon a time, there were deliberative
systems

● and they...
● then some young turks looked upon the flaws and

said...
● so reactive systems were born.

Reactive Systems Influences

● Heavily influenced by ideas from biology.
● Animal behaviors are simple
● We can model them and create effective

mechanical animals
●

Some of those influences

● A Quick look at some of those influences follows
● Originally from R Murphy: AI Robotics.

Introduction to AI Robotics (MI
T Press)

Chapter 3: Biological Foundations 6

Marr’s Computational Theory

Level 1:
What is the phenomena

we’re trying to represent?

for (i=nCol..
Level 2:

How it be represented as
a process with inputs/outputs?

Level 3:
How is it implemented?

Introduction to AI Robotics (MI
T Press)

Chapter 3: Biological Foundations 7

Level 1: Existence Proof

Level 1:
What is the phenomena

we’re trying to represent?

Goal: how to make line drawings of objects?

people can do this by age 10, computers should

Introduction to AI Robotics (MI
T Press)

Chapter 3: Biological Foundations 8

Level 2: Inputs, Outputs,
Transforms

for (i=nCol..
Level 2:

How it be represented as
a process with inputs/outputs?

light drawing

retina
(gradient)

light lines (edges) drawing

Introduction to AI Robotics (MI
T Press)

Chapter 3: Biological Foundations 9

Level 3: Implementation

Level 3:
How is it implemented?

+-

-

-
--

- -

-

Center Surround Cell
in retinal ganglion

Sobel Edge Detector
in computer vision

0 +2

+10-1

-2

-1 0 +1

0 0

-1-2-1

0

+1 +2 +1

Introduction to AI Robotics (MI
T Press)

Chapter 3: Biological Foundations 10

Behavior Definition (graphical)

BEHAVIOR

Sensory
Input

Pattern
of Motor
Actions

Introduction to AI Robotics (MI
T Press)

Chapter 3: Biological Foundations 11

Types of Behaviors
● Reflexive

– stimulus-response, often abbreviated S-R
● Reactive

– learned or “muscle memory”
● Conscious

– deliberately stringing together

WARNING Overloaded terms:
Roboticists often use “reactive behavior” to mean purely reflexive,

And refer to reactive behaviors as “skills”

WARNING Overloaded terms:
Roboticists often use “reactive behavior” to mean purely reflexive,

And refer to reactive behaviors as “skills”

Introduction to AI Robotics (MI
T Press)

Chapter 3: Biological Foundations 12

Ethology: Coordination and
Control of Behaviors

Nobel 1973 in
physiology or
medicine
•von Frisch
•Lorenz
•Tinbergen

www.nobel.se

INNATE RELEASING MECHANISMSINNATE RELEASING MECHANISMS

Introduction to AI Robotics (MI
T Press)

Chapter 3: Biological Foundations 13

Arctic Terns

• Arctic terns live in Arctic (black, white, gray environment, some
grass) but adults have a red spot on beak

• When hungry, baby pecks at parent’s beak, who regurgitates food
for baby to eat

• How does it know its parent?
– It doesn’t, it just goes for the largest red spot in its field of view (e.g., ethology grad student with construction paper)

– Only red thing should be an adult tern

– Closer = large red

Introduction to AI Robotics (MI
T Press)

Chapter 3: Biological Foundations 14

Innate Releasing Mechanisms

BEHAVIOR

Sensory
Input

Pattern
of Motor
Actions

Releaser

present? N

Y

/dev/null

Sensory input
and/or

internal state

Introduction to AI Robotics (MI
T Press)

Chapter 3: Biological Foundations 15

Example: Hide Behavior

● Programmed in C++, << 100 LOC
● shows

– taxis (oriented relative to light, wall, niche)
– fixed action pattern (persisted after light was

off)
– reflexive (stimulus, response)
– impliciting sequencing
– use of internal state

Introduction to AI Robotics (MI
T Press)

Chapter 3: Biological Foundations 16

Example: Cockroach Hide
● light goes on, the cockroach turns and runs

● when it gets to a wall, it follows it

● when it finds a hiding place (thigmotrophic),
goes in and faces outward

● waits until not scared, then comes out

● even if the lights are turned back off earlier

Introduction to AI Robotics (MI
T Press)

Chapter 3: Biological Foundations 17

Reflexive Behaviors S-R
● light goes on, the cockroach turns and runs

● when it gets to a wall, it follows it

● when it finds a hiding place (thigmotrophic),
goes in and faces outward

● waits until not scared, then comes out

● even if the lights are turned back off earlier

Introduction to AI Robotics (MI
T Press)

Chapter 3: Biological Foundations 18

Fixed Pattern Actions
● light goes on, the cockroach turns and runs

● when it gets to a wall, it follows it

● when it finds a hiding place (thigmotrophic),
goes in and faces outward

● waits until not scared, then comes out

● even if the lights are turned back off earlier

Introduction to AI Robotics (MI
T Press)

Chapter 3: Biological Foundations 19

Exhibits Taxis
● light goes on, the cockroach turns and runs

● when it gets to a wall, it follows it

● when it finds a hiding place (thigmotrophic),
goes in and faces outward

• waits until not scared, then comes out

• even if the lights are turned back off earlier

to light

to wall

to niche

Introduction to AI Robotics (MI
T Press)

Chapter 3: Biological Foundations 20

What happens when there’s a
conflict from concurrent

behaviors?

● Equilbrium
– Feeding squirrels-

feed, flee: hesitate
in-between

● Dominance
– Sleepy, hungry:

either sleep or eat
● Cancellation

– Sticklebacks
defend, attack:
build a nest

?

Introduction to AI Robotics (MI
T Press)

Chapter 3: Biological Foundations 21

Gibson’s Ecological Approach

● Acting and sensing co-evolved as agent
survived in a particular environment. The
environment affords the agent what it
needs to survive.

● The perception needed to release or
guide the “right action” is directly in the
environment, not inferred or memorized
– Ex. Red on Artic Terns== food
– Ex. flat surface at just over knee level - sitting

● Percepts are called affordances or said to
be obtained through direct perception

Introduction to AI Robotics (MI
T Press)

Chapter 3: Biological Foundations 22

Gibsonian Affordances
● How do you know you’re going fast in a

car? Or in a space movie?

● How do animals know when to mate?

● How do mosquitoes know to bite in the
most tender areas?

● What should you do when you think
you’re being stalked by a mountain lion?

● What’s your favorite fishing lure?

One key to reactive systems

● The world is its own best model
● don't remember anything about the world just use

sensor data.

Reactive Systems

● Behavioral
● Sense => plan => act

● Reactive
● sense(<)=>act
● sense(<)=>act
● sense(<)=>act
● each part of the controller directly tries to act on

its sense data if releaser is applicable.

Easy Reactivity

● An easy reactive robot
● all sense=>act behaviors are mutually exclusive

– note disagreement about term “behavior”
– no two will try to trigger competing actions

● must have separate controller for every useful
partition of sensor space

● two bump sensors have what partition?
● two ir distance sensors?
● a sonar ring of 12 sensors?

simple robot example

● robot w/ two bump sensors
● left bump
● right bump

● control
● if right bump pressed, turn left
● if left bump pressed, turn right
● if both pressed, back up and turn left.
● if neither pressed, go forward.

● sensor space fully partitioned.
● problems?

mutually exclusive is intractable

● Mutually exclusive conditions quickly become
intractable

● even if you setup a lookup table for fastest
processing

– 4 dimensional array for 4 IR sensors
– each element for relevant sensor range
– faster than a big bunch of conditions (if else if etc)
– huge
– difficult to design
– faster than deliberative.

Common problems

● Common problems for simple reactive robots
● box canyon problem.
● oscillation problem.

● two common answers
● use randomness (sparingly)
● remember one step back

– not representing world, just robot's actions.

Consolidating sensor input

● fully partitioned input intractable
● consolidate to make tractable
● work through example from page 165 on board.

Action Selection

● What about non-mutually exclusive actions?
● need action selection mechanism
● this is about control architectures after all
● Action selection

– choosing which action should dominate at this
time step

– Command Arbitration
● choose exactly one action

– Command Fusion
● merge two or more
● good for vector based navigation.

need for parallelism

● each individual controller (behavior) needs to run
in parallel

● so either parallel processing or multitasking
● all have to process each timestep
● then controller selects

subsumption

● Subsumption architecture
● one of first and best known reactive architectures
● Rod Brooks (MIT)
● stirring up trouble

– gets you tenure at MIT

subsumption description

● subsumption is layered architecture
● higher layers can override lower layers in two

ways
● inhibition: the outputs of a behavior are turned

off; the module receives input, does its
computation – then nothing

● suppression: the inputs to the module are turned
off. no input so no computation

Subsumption Example

● image from Robyn Murphy's intro to AI robotics

Potential Fields

● Potential Fields is another popular reactive robot
control technique

● often abbreviated pfields
● developed by Ron Arkin (Georgia Tech)
● primarily used for robot navigation
● clever techniques to get around that.

– but focus on navigation here
● output of behavior is a vector

– in 2d space very easy to model

Potential Fields

● Each behavior has as output a vector
● several primitive vectors are basics of theory
● can combine for more fields
● from each (active) behavior robot 'feels' a force

from vector
– magnitude and direction.

● when several behaviors all produce vectors of
force, final output (behavior selection) is done
by vector summation.

●

Potential fields

● Even though behavior is a single vector,
● visualize by calculating vectors for every spot in

entire environment
●

Five primitive pfields

● a)uniform
● b)perpendicular
● c) attraction
● d) repulsion
● e)tangential
● sometimes:

random

Using primitive pfields

● How would we use
● a)uniform
● b)perpendicular
● c) attraction
● d) repulsion
● e)tangential
● random

More questions for you

● What field would you use for
● moving toward the light
● avoiding obstacles ?

Combining fields

● Get more interesting behavior by combining more
than one. Example: From AI Robotics

●

obstacle

goal

The visualized fields

● using pfields to visualize the final output
● goal: visible

from 10 ft
● obstacle from

5 ft

Final Trajectory

● Visualize whole field
● but robot feel two vectors at any timestep.
● sums them up to get final move vector

Implementing Pfields

● When a robot receives a sensor input
● we'll represent vector magnitude and direction as

two numbers
– x change, y change
– rise and run
– so what is the representation of this vector?

Representing robot in the field

● Let the robot be at origin
● so vector back and to left might be [-5,-5]

combining behaviors

● Combine behaviors with simple vector addition
● with our representation of vectors
● add both x change values, result is new xchange

value
● same with y change
● example

– light finding robot with three light sensors
– left, right, center
– left 34 (lots of light)
– center 45 (still lots of light)
– right 110 (medium amount of light)

sensor input mapped to behavior
● Light Sensor input

● left light sensor value vector output
● 0-50 [-10, 0]
● 51-75 [-5, 0]
● 76-110 [-3, 0]
● 111-150 [-1, 0]
● Right sensor value vector output
● 0-50 [10, 0]
● 51-75 [5, 0]
● 76-110 [3, 0]
● 111-150 [1, 0]

What about the final result?

● do out center lookup table on board
● what is resulting behavior from just these

attraction vectors?
●

better turn now
● Now you have the vector,

● in omni-directional robot great, else turn
● dot product of two vectors a.b

– |a| * |b| Cos(theta)
● where |a| is the magnitude of a

– solve for theta
● theta = arccos(a.b/(|a|*|b|))
● unit vector discussion.

Calculating the turn angle

● a.b is also
● a[x]*b[x] + a[y]*b[y] so
● theta = arccos((a[x]*b[x] + a[y]*b[y])/ (|a|*|b|))
● now use forward vector as a and calculated vector

as b; calculate turn – then go forward by |b|

Moving through the turn
ack: These next slides based on tutorial from shelden Robotics

● So you've calculated a turn angle of theta
● How do you calculate the turn itself?

Summary
Based on our mission, we know
how many degrees we need to
turn the robot, or our desired turn
angle Θ.

And Θ corresponds to a fraction
(dCT) of our robot's turning
circumference (Cturn):

Θ

dCT Cturn X=
Θ

360°

Φ

And dCT is also a fraction of Cwheel

of Wheel Motor Degrees =
dCT

Cwheel
360° X

of Wheel Motor Rotations =
dCT

Cwheel

Summary – 2 Combining terms
Based on our mission, we know how many degrees we need to turn the robot, or our
desired turn angle Θ.

And Θ corresponds to a fraction (dCT) of our robot's turning circumference (Cturn):

And dCT is also a fraction of Cwheel

Substituting dCT's factors into the # of Rotations or Degrees has some interesting
results.

dCT Cturn X=
Θ

360°

of Wheel Motor Degrees =
dCT

Cwheel
360° X

of Wheel Motor Rotations =
Cwheel
Cturn Θ

360°

 X

dCT

Cwheel
=

=
Cwheel

360° X
Cturn Θ

360°

 X

Summary – 2 Combining terms
Based on our mission, we know how many degrees we need to turn the robot, or our
desired turn angle Θ.

And Θ corresponds to a fraction (dCT) of our robot's turning circumference (Cturn):

And dCT is also a fraction of Cwheel

Substituting dCT's factors into the # of Rotations or Degrees has some interesting
results that make all the math EASIER.

dCT Cturn X=
Θ

360°

of Wheel Motor Degrees =
dCT

Cwheel
360° X

of Wheel Motor Rotations =
Cwheel
Cturn Θ

360°

 X

dCT

Cwheel
=

=
Cwheel

360° X
Cturn Θ

360°

 X

of Wheel Motor Degrees = X
Cwheel

Cturn
Θ

Reading Assignment

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

