
Reactive Control

Robotics



Reactive systems.. a Beginning

● Once upon a time, there were deliberative 
systems

● and they...
● then some young turks looked upon the flaws and 

said...
● so reactive systems were born. 



Reactive Systems Influences

● Heavily influenced by ideas from biology.
● Animal behaviors are simple
● We can model them and create effective 

mechanical animals
●



Some of those influences

● A Quick look at some of those influences follows
● Originally from R Murphy: AI Robotics.
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Marr’s Computational Theory

Level 1:
What is the phenomena

we’re trying to represent?

for (i=nCol..
Level 2:

How it be represented as
a process with inputs/outputs?

Level 3:
How is it implemented?
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Level 1: Existence Proof

Level 1:
What is the phenomena

we’re trying to represent?

Goal: how to make line drawings of objects?

people can do this by age 10, computers should
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Level 2: Inputs, Outputs, 
Transforms

for (i=nCol..
Level 2:

How it be represented as
a process with inputs/outputs?

light drawing

retina
(gradient)

light lines (edges) drawing
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Level 3: Implementation

Level 3:
How is it implemented?
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Behavior Definition (graphical)

BEHAVIOR

Sensory
Input

Pattern
of Motor
Actions
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Types of Behaviors
● Reflexive 

– stimulus-response, often abbreviated S-R
● Reactive 

– learned or “muscle memory”
● Conscious 

– deliberately stringing together

WARNING Overloaded terms:
Roboticists often use “reactive behavior” to mean purely reflexive,

And refer to reactive behaviors as “skills”

WARNING Overloaded terms:
Roboticists often use “reactive behavior” to mean purely reflexive,

And refer to reactive behaviors as “skills”
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Ethology: Coordination and 
Control of Behaviors

Nobel 1973 in 
physiology or 
medicine
•von Frisch
•Lorenz
•Tinbergen

www.nobel.se

INNATE RELEASING MECHANISMSINNATE RELEASING MECHANISMS
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Arctic Terns

• Arctic terns live in Arctic (black, white, gray environment, some 
grass) but adults have a red spot on beak

• When hungry, baby pecks at parent’s beak, who regurgitates food 
for baby to eat

• How does it know its parent?
– It doesn’t, it just goes for the largest red spot in its field of view (e.g., ethology grad student with construction paper)

– Only red thing should be an adult tern

– Closer = large red
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Innate Releasing Mechanisms

BEHAVIOR

Sensory
Input

Pattern
of Motor
Actions

Releaser

present? N

Y

/dev/null

Sensory input
and/or

internal state
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Example: Hide Behavior

● Programmed in C++, << 100 LOC
● shows 

– taxis (oriented relative to light, wall, niche)
– fixed action pattern (persisted after light was 

off)
– reflexive (stimulus, response)
– impliciting sequencing
– use of internal state
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Example: Cockroach Hide
● light goes on, the cockroach turns and runs

● when it gets to a wall, it follows it

● when it finds a hiding place (thigmotrophic), 
goes in and faces outward

● waits until not scared, then comes out

● even if the lights are turned back off earlier
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Reflexive Behaviors S-R
● light goes on, the cockroach turns and runs

● when it gets to a wall, it follows it

● when it finds a hiding place (thigmotrophic), 
goes in and faces outward

● waits until not scared, then comes out

● even if the lights are turned back off earlier
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Fixed Pattern Actions
● light goes on, the cockroach turns and runs

● when it gets to a wall, it follows it

● when it finds a hiding place (thigmotrophic), 
goes in and faces outward

● waits until not scared, then comes out

● even if the lights are turned back off earlier
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Exhibits Taxis
● light goes on, the cockroach turns and runs

● when it gets to a wall, it follows it

● when it finds a hiding place (thigmotrophic), 
goes in and faces outward

• waits until not scared, then comes out

• even if the lights are turned back off earlier

to light

to wall

to niche
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What happens when there’s a 
conflict from concurrent 

behaviors?

● Equilbrium
– Feeding squirrels-

feed, flee: hesitate 
in-between

● Dominance
– Sleepy, hungry: 

either sleep or eat
● Cancellation

– Sticklebacks 
defend, attack: 
build a nest 

?
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Gibson’s Ecological Approach

● Acting and sensing co-evolved as agent 
survived in a particular environment.  The 
environment affords the agent what it 
needs to survive.

● The perception needed to release or 
guide the “right action” is directly in the 
environment, not inferred or memorized 
– Ex. Red on Artic Terns== food
– Ex. flat surface at just over knee level - sitting 

● Percepts are called affordances or said to 
be obtained through direct perception
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Gibsonian Affordances
● How do you know you’re going fast in a 

car? Or in a space movie?

● How do animals know when to mate?

● How do mosquitoes know to bite in the 
most tender areas?

● What should you do when you think 
you’re being stalked by a mountain lion?

● What’s your favorite fishing lure?



One key to reactive systems

● The world is its own best model
● don't remember anything about the world just use 

sensor data.



Reactive Systems

● Behavioral
● Sense => plan => act

● Reactive 
● sense(<)=>act
● sense(<)=>act
● sense(<)=>act 
● each part of the controller directly tries to act on 

its sense data if releaser is applicable.



Easy Reactivity

● An easy reactive robot
● all sense=>act behaviors are mutually exclusive 

– note disagreement about term “behavior”
– no two will try to trigger competing actions

● must have separate controller for every useful 
partition of sensor space

● two bump sensors have what partition?
● two ir distance sensors?
● a sonar ring of 12 sensors?



simple robot example

● robot w/ two bump sensors
● left bump
● right bump

● control
● if right bump pressed, turn left
● if left bump pressed, turn right
● if both pressed, back up and turn left.
● if neither pressed, go forward.

● sensor space fully partitioned.
● problems?



mutually exclusive is intractable

● Mutually exclusive conditions quickly become 
intractable

● even if you setup a lookup table for fastest 
processing

– 4 dimensional array for 4 IR sensors
– each element for relevant sensor range
– faster than a big bunch of conditions (if else if etc)
– huge
– difficult to design
– faster than deliberative. 



Common problems 

● Common problems for simple reactive robots
● box canyon problem.
● oscillation problem.

● two common answers
● use randomness (sparingly)
● remember one step back

– not representing world, just robot's actions.



Consolidating sensor input 

● fully partitioned input intractable
● consolidate to make tractable
● work through example from page 165 on board.



Action Selection

● What about non-mutually exclusive actions?
● need action selection mechanism
● this is about control architectures after all
● Action selection

– choosing which action should dominate at this 
time step

– Command Arbitration
● choose exactly one action

– Command Fusion
● merge two or more
● good for vector based navigation.



need for parallelism

● each individual controller (behavior) needs to run 
in parallel

● so either parallel processing or multitasking
● all have to process each timestep
● then controller selects



subsumption

● Subsumption architecture
● one of first and best known reactive architectures
● Rod Brooks (MIT)
● stirring up trouble

– gets you tenure at MIT



subsumption description

● subsumption is layered architecture
● higher layers can override lower layers in two 

ways
● inhibition: the outputs of a behavior are turned 

off; the module receives input, does its 
computation – then nothing

● suppression: the inputs to the module are turned 
off. no input so no computation



Subsumption Example

● image from Robyn Murphy's intro to AI robotics



Potential Fields

● Potential Fields is another popular reactive robot 
control technique

● often abbreviated pfields
● developed by Ron Arkin (Georgia Tech)
● primarily used for robot navigation
● clever techniques to get around that.

– but focus on navigation here
● output of behavior is a vector

– in 2d space very easy to model



Potential Fields

● Each behavior has as output a vector
● several primitive vectors are basics of theory
● can combine for more fields
● from each (active) behavior robot 'feels' a force 

from vector
– magnitude and direction.

● when several behaviors all produce vectors of 
force, final output (behavior selection) is done 
by vector summation.

●



Potential fields

● Even though behavior is a single vector, 
● visualize by calculating vectors for every spot in 

entire environment
●



Five primitive pfields 

● a)uniform
● b)perpendicular
● c) attraction
● d) repulsion
● e)tangential
● sometimes:

random



Using primitive pfields

● How would we use
● a)uniform
● b)perpendicular
● c) attraction
● d) repulsion
● e)tangential
● random



More questions for you

● What field would you use for 
● moving toward the light
● avoiding obstacles ?



Combining fields

● Get more interesting behavior by combining more 
than one. Example: From AI Robotics

●

obstacle

goal



The visualized fields

● using pfields to visualize the final output
● goal: visible

from 10 ft
● obstacle from 

5 ft



Final Trajectory

● Visualize whole field
● but robot feel two vectors at any timestep.
● sums them up to get final move vector



Implementing Pfields

● When a robot receives a sensor input
● we'll represent vector magnitude and direction as 

two numbers
– x change, y change
– rise and run
– so what is the representation of this vector?



Representing robot in the field

● Let the robot be at origin 
● so vector back and to left might be [-5,-5]



combining behaviors

● Combine behaviors with simple vector addition
● with our representation of vectors
● add both x change values, result is new xchange 

value
● same with y change
● example

– light finding robot with three light sensors
– left, right, center
– left 34 (lots of light)
– center 45 (still lots of light)
– right 110 (medium amount of light)



sensor input mapped to behavior
● Light Sensor input

● left light sensor value                vector output
● 0-50                                                [-10, 0]
● 51-75       [-5, 0]
● 76-110                                            [-3, 0]
● 111-150                                          [-1, 0]
● Right sensor value vector output
● 0-50                                                [10, 0]
● 51-75    [5, 0]
● 76-110                                            [3, 0]
● 111-150                                          [1, 0]



What about the final result?

● do out center lookup table on board
● what is resulting behavior from just these 

attraction vectors?
●



better turn now
● Now you have the vector,

● in omni-directional robot great, else turn
● dot product of two vectors a.b

– |a| * |b| Cos(theta)
● where |a| is the magnitude of a

– solve for theta 
● theta = arccos(a.b/(|a|*|b|))
● unit vector discussion.



Calculating the turn angle

● a.b is also 
● a[x]*b[x] + a[y]*b[y] so 
● theta = arccos( (a[x]*b[x] + a[y]*b[y])/ (|a|*|b|))
● now use forward vector as a and calculated vector 

as b; calculate turn – then go forward by |b|



Moving through the turn
ack: These next slides based on tutorial from shelden Robotics

● So you've calculated a turn angle of theta
● How do you calculate the turn itself?





  

Summary
Based on our mission, we know 
how many degrees we need to 
turn the robot, or our desired turn 
angle Θ.

And Θ corresponds to a fraction 
(dCT) of our robot's turning 
circumference (Cturn): 

Θ

dCT Cturn   X=
Θ

360°

Φ

And dCT is also a fraction of Cwheel

# of Wheel Motor Degrees  =  
dCT

Cwheel
360°  X

# of Wheel Motor Rotations  =  
dCT

Cwheel



  

Summary – 2 Combining terms
Based on our mission, we know how many degrees we need to turn the robot, or our 
desired turn angle Θ.

And Θ corresponds to a fraction (dCT) of our robot's turning circumference (Cturn): 

And dCT is also a fraction of Cwheel

Substituting dCT's factors into the # of Rotations or Degrees has some interesting 
results.

dCT Cturn   X=
Θ

360°

# of Wheel Motor Degrees  =  
dCT

Cwheel
360°  X

# of Wheel Motor Rotations  =  
Cwheel
Cturn Θ

360°

 X

dCT

Cwheel
=

=
Cwheel

360°  X
Cturn Θ

360°

 X



  

Summary – 2 Combining terms
Based on our mission, we know how many degrees we need to turn the robot, or our 
desired turn angle Θ.

And Θ corresponds to a fraction (dCT) of our robot's turning circumference (Cturn): 

And dCT is also a fraction of Cwheel

Substituting dCT's factors into the # of Rotations or Degrees has some interesting 
results that make all the math EASIER.

dCT Cturn   X=
Θ

360°

# of Wheel Motor Degrees  =  
dCT

Cwheel
360°  X

# of Wheel Motor Rotations  =  
Cwheel
Cturn Θ

360°

 X

dCT

Cwheel
=

=
Cwheel

360°  X
Cturn Θ

360°

 X

# of Wheel Motor Degrees  =   X
Cwheel

Cturn 
Θ



Reading Assignment
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