BSU Robotics Swarm Robotics

Admin

- Quiz of course
- Lab?

•

Swarm Robotics

- Special Subset of Multi robot systems.
 - Becoming more popular in last decade or so
- Revenge/Refuge of the insect roboticists
 - Generally very much inspired by insect collectives
 - Especially today

Ants/bee other social insects.

Swarm Characteristics

Characteristics

- Large-ish numbers of robots
 - More recently quite large
- Fault tolerant
- Generally small, individually unimpressive robots
- Usually homogeneous robot collective
- Usually have some mechanism for physically connecting to others

Example Swarms

The original swarmbots

Swarms 2016-17

- Radhika Nagpal (Harvard) Kilobots
 - Rubenstein (grad student) pictured
 - Kilobot project

rogrammable-rob

Example Swarms II

Some newer swarms

Example Swarms III

Commercial and cutting edge research

Swarms today

- Pentagon swarm policies
- https://www.politico.com/newsletters/digital-future-daily/2023/02/07/killer-robot-swarms-an-update-00081623
- Swarms in business
- https://www.factmr.com/report/swarm-intelligence-market
- Pictures of swarms in business 2021
- https://www.cnn.com/2021/06/15/asia/swarm-rob ots-hong-kong-warehouse-hnk-spc-intl/index.htm

Not all on land

- Not all of the swarms are land based
 - Though most are
 - aquatic

- https://www.youtube.com/watch?v=761IxFeaK4w
- Chinese 'loitering munitions' drone swarms
- https://www.youtube.com/watch?v=Ma3ya_lqCLM
- Search and (rescue?)
- https://www.youtube.com/watch?v=P9ZbipO8vxM
- And the Brits
- https://www.youtube.com/watch?v=zq1ud7CBOaU

The original swarms

- Best video of original swarms showing basic behaviors
 - https://www.youtube.com/watch?v=J7xFLrqVRV M

•

Swarm Algorithms I

Swarm Robot algorithms

- Had to throw out nearly everything from AI/ALife swarms
- Operating in the real world
 - Can't (and usually shouldn't) destructively modify environment by laying down trail

Swarm Algorithms II

- Characteristics of Swarm Algorithms
 - Distributed
 - Tolerant of lost members
 - Scale well

- Should work with a few and better with more
- More robots-> more effective
- Mythical man month syndrome not allowed
- Total behavior of the algorithm treats swarm as single entity.
 - Rely on existing ad-hoc communication networks to focus on higher level behaviors.

Swarm Algorithms III

- Characteristics continued
 - Built from simple behaviors
 - Individual behaviors often can be represented with simple finite state machine
 - Decentralized

- Each robot is autonomous
- All interactions are local
 - No broadcast messages just messages to local neighbors.

Common Swarm behaviors

- Robotics, like CS, often has minimum bar to reach to be taken seriously
 - Computer vision example
- Swarms nearly all need to implement
 - Dispersion/exploration
 - Docking/connecting

- Clumping (like to like)
- Follow the leader

Dispersion

- Basic algo for indoors
 - Locate C nearest neighbors
 - Use pfields vectors or some equivelent to find vector to maximize distance from all
 - Move robot

- What should C be?
 - Empirical testing says 2
 - Means what?

Dispersions Friend: Exploration

- Generally Dispersion coupled with frontier exploration
 - Have robots flow to new regions maximum dispersion and coverage.
 - Trade off each time step first dispersion, next exploration, repeat

•

Exploration

• Algo:

- Each robot decides
 - Am I at wall (obstacle)
 - Am I on Frontier (open space)
 - Am I interior? (neither only robots around)
 - Wall nodes and frontier nodes don't move during this step
 - Interior nodes
 - query
 - Messages passed from robot to robot
 - Count number of hops to frontier
 - Find neighbor with shortest hops and move toward it

Distributed mapping

Basics

- Take each individual robot's map and superimpose them on one another.
- Problem?

Distributed mapping

Basics

- Take each individual robot's map and superimpose them on one another.
- Problem:
 - How do we know what part of robot I's map corresponds to the same part of robot J's map?
 - Optometry deteriorates over time

Cheap solution

- Cheap and easy solution
 - Add beacons to the environment to know where robot is in relation to beacon.
 - Except?

Cheap solution

- Cheap and easy solution
 - Add beacons to the environment to know where robot is in relation to beacon.
 - Except

- Swarms aren't allowed to modify environment
- Big no-no with so many

Solution

Beacon solution

- Let other robots in swarm be the beacons.
 - Once lead robots are in place,
 - Stop and go into beacon mode till swam passes by, then move on and rejoin

Chain formation

- Often want to group swarm bots up
 - Want to do this in orderly manner
 - Form chains

- Original implementation on Sbots
 - Four state machine
 - Search, explore, chain, finished

_

Chain swarm states

- Search
 - Randomly move around avoid obstacles, no lit LEDs (s bot communication)
 - If find chain move to explore
- Explore

- Move along chain following colors
- Chain always follows pattern

_			
3			
3			
>			
3			
P			
19			
P			
19			
P.			
P			
P			
P			
P			
P			
P			
P			
31 31 31 31 31			