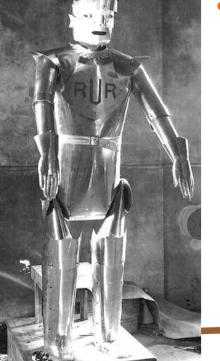
Introduction to Robotics

To Begin



- Syllabus
- Class layout and expectations

Where did Robot come from

- Karel Capek
 - czech playwright
 - created the term from czech words for forced labor and serf (1921)

Robotics in the American Consciousnesses

- Robotics
 - Asimov 1940s
 - (in)famous Three Laws
 - A robot may not injure a human being or, through inaction, allow a human being to come to harm.
 - A robot must obey the orders given to it by human beings, except where such orders would conflict with the First Law.
 - A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.
 - Issues?

What is a robot?

- Maja Matarić
 - a robot: An autonomous system which exists in the physical world, can sense its environment, and can act on it to achieve some goals.
- pretty good definition
 - need all parts

Autonomous

- acts on its own
 - makes own decisions to carry out actions
 - not directly controlled by human
 - not either of these:

© CanStockPhoto.com - csp74597673

Human Controlled

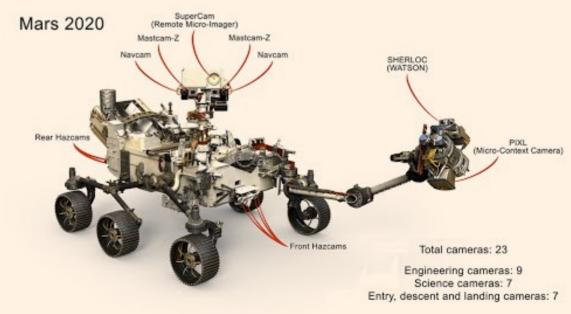
- Two ways of human control of robot-like constructs
 - Remote control
 - human uses own senses to control device
 - By our definition not really a robot.
 - Tele-operation
 - human uses robots sensors to control it for a while.

Exists in the world

- A proper robot exists in the world
 - has to get sensor data from world and make sense of it.
 - big challenge
 - some people don't like this requirement
 - means simulated "robots" aren't robots
 - they aren't
 - beware simulations generally
 - as one who has done both simulations useful, but gloss over too much important stuff.
 - Tale of the robotics student a couple years ago and the robot that curved when told to go forward

Can sense environment

- If the robot can't sense, can't make decisions
 - must instead follow some predetermined plan.
 - not acting autonomously
 - not working effectively in the world.


Act to Achieve Goals.

Robot has to be able to act

- or just big sensor platform.
- difference between
- Perseverance landed 2021

Where did the field of Robotics come from

- Now that we have a decent definition of what a robot is
 - where did the field come from?
 - Modern field grew out of
 - control theory
 - cybernetics
 - Al
 - with a healthy dose of engineering thrown in.

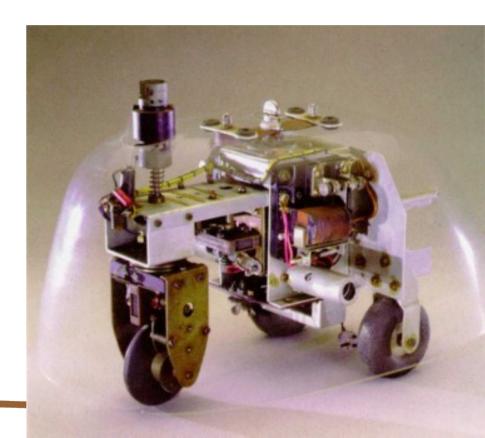
Control Theory

- Mathematical study of properties of automated systems
 - old disciple
 - ancient Greek origins
 - in more modern times often studied as part of mechanical engineering
 - positive and negative feedback loops
 - Basics are easy to implement, so we will cover them
 - Even if they are more of the domain of Mechanical eng these days

Cybernetics

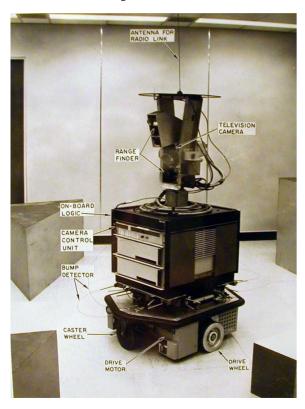
- field pioneered in 1940's
- study of control theory applied to biological entities
 - searching for common principles in animals and machines
- no longer exists as a discipline
- idea of biomemetic machines still very important
 - machines that work the same way (some) living things work

Artificial Intelligence



- Study of how to get machines to "think"
 - study of how machines can do things only humans are good at
 - self defeating but often accurate definition.
 - Important part of the autonomous part of robotics.
 - how can the robot decide how to achieve its goal
 - early AI robots took side track too much thinking for too many aspects of robot
 - still important for robots that do anything really useful.
 - Not the LLM style AI currently so popular

The first real robot


- The first real robot by our definition(1949)
 - W. Grey Walter's tortoise
 - light sensors only
 - tricycle steering
 - vacuum tube computation

Other important robots in history

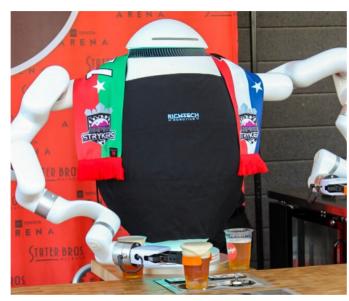
Shakey

Stanford Cart

Braitenburg's vehicles

Robots today I

- Left: Aria by Realbotix at CES 2025 (retail \$175,000)
- Right: Unitree Go2 Robot Dog, On amazon for \$2400



Robots today II

Robotics vs. Computer Science

- In computer science we create models
 - Abstract
 - Generally repeatable discrete conditions.
- In robotics, must deal with actual world all the time.
 - Small or large part depending on mobility.
 - The real world is messy.

Assignment

- Check your lab access
- Sign up for your group.
- Read Chapter 1 in the book (pages 19-26)