Effectors and Movement

Admin and Reading

- Quizzes:
 - Quizzes begin Wednesday
- Reading for this slideset
 - Read chapter 6 in the book
 - Then read chapter 2
 - I'll cover them in that order.

Putting the mobile in mobile robotics

- What kinds of effectors might we use to move a robot?
 - And what kind of movement?

Putting the mobile in mobile robotics

- What kinds of effectors might we use to move a robot?
 - Legs (walk,crawl, hop, etc)
 - Wheels (roll)
 - Arms (swinging, crawl, climb)
 - Wings (Fly)
 - Flippers
 - more?

Actuators

- As book says, most common actuator is motor
 - To turn wheels
 - Chapter 6 covers various types of motors, AC, DC, Stepper, Servo
 - We have servo motors attached to our robots.
 - Motor controllers needed
 - Electric spikes
 - Beware of hitting an obstacle and drawing 'stall current'

Other Actuators

- Hydraulic and Pneumatics:
 - Pressurized Fluid or gas to move the robot effectors
 - Pneumatics for soft robots.
 - Often hydraulics are for larger robots and heavier lifting
- Safety redux:
 - Need to be very careful with actuators able to lift heavier loads.

Robotics and biological inspirations

- Lots of biological inspirations for more recent (last 20 years) robotics work.
 - How do simple animals do it?
 - Maybe we can imitate them since they don't need much computing?
 - So how do most animals move?

Robotics and biological inspirations

- Lots of biological inspirations for more recent (last 20 years) robotics work.
 - How do simple animals do it?
 - Maybe we can imitate them since they don't need much computing?
 - So how do most animals move?
 - Legged locomotion
 - Turns out to be much harder than wheels/tracks.
 - But processing is good enough to do more and more of it.

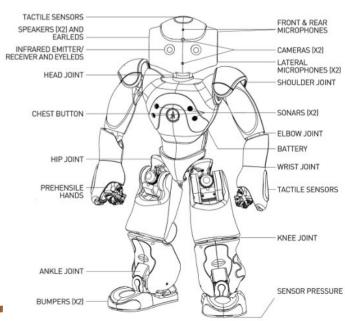
Gait

- A robot's gait is the way the robot moves, the order of lifting and lowing legs etc.
- Want gait to have
 - Stability
 - Speed
 - Efficiency
 - Robustness (can recover from some failures)
 - Simplicity
 - Not burning too much processing power on this

Stability

- Robot needs to be stable
- Stable: property of not wobbling, leaning or falling over while doing job
 - Particularly at rest (not moving)
 - But also while moving.
- For stability
 - Center of gravity needs to be over parts of robot holding it up (legs etc) called ground points
 - Area covered by ground points is polygon of support.

Ground points and stability



What sort of legged gaits provide good stability?

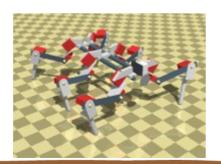
Ground points and stability

- What sort of legged gaits provide good stability?
 - Two legs? Not so much
 - One reason Honda's robot was so impressive.
 - Notice the Nao's big feet? That is their cheat.
 - Four legs?
 - Stable but.. we'll talk about that
 - More legs?
 - More stable usually.

Statically stable

- If a robot is stable at all times while walking
 - Called Statically stable.
 - Baby crawling
 - Statically stable
 - Horse galloping
 - Not
 - Human walking?

Dynamically stable

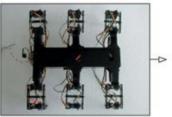

- Body must actively move to stay stable
 - Dynamically stable
 - That human walking upright, horse galloping etc.

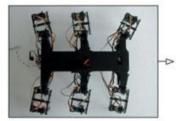
Tripod gait

- Tripod gait is popular one for six legged robots
- Stable, efficient etc.
- In tripod gait
 - Two legs down on one side, one on the other
 - Other three legs up.

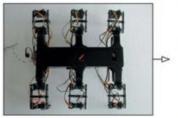
_

- While big dog and friends get a lot of press, the roach/lizard robots actually get a lot of uses too
- https://techxplore.com/news/2023-02-lizard-inspired-robot-explor e-surface-mars.html
- When sending robots to mars, what sorts of considerations do we want?

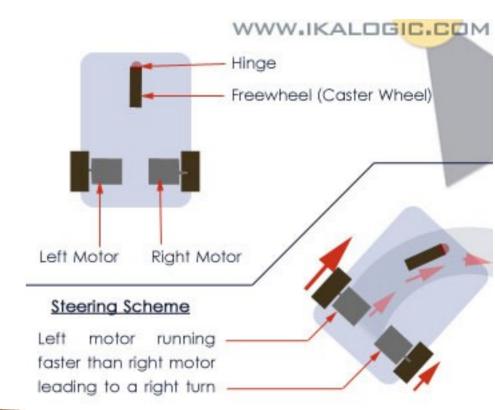

Ripple gait



- For 6+ legs ripple gait popular
- Most legs on ground
 - One from each side off ground at once
 - Statically stable


•

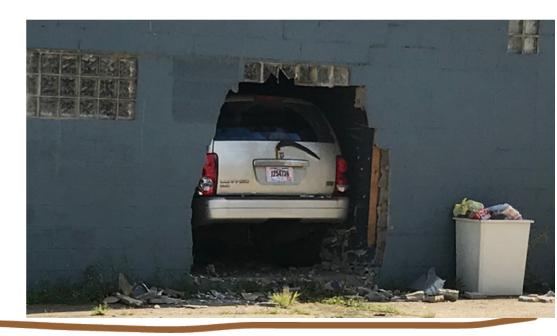
Wheels



- Legs are fairly popular in robotics today
 - But wheels are still king
 - Up till now, mars rovers went with wheels
 - Cheap
 - Effective
 - Stable (statically and dynamically with at least three wheels)
 - simple

Differential drive

- Most common budget robot locomotion
 - Two motors, one on each side of robot
 - Each turns one powered wheel
 - Other non powered wheels possible.
 - This is what we have in the GoPiGo robots


•

Trajectory following and destinations

- It is often easier to get to a destination than to follow an arbitrary trajectory to the destination.
 - Example?
 - Why would we care?
 - Brain surgery example
 - Or even ====>

 (not the best way to get into the garage)

Tracks

Tracked robots:

- Also popular these days
 - Not as much as 10 years ago though
- Advantages
 - Little slippage when beginning forward/backward move
 - Often can handle heavier payloads
- Disadvantages
 - Turning through slippage
 - Not so many track options as wheels

Driving the turtlebots

- Go forward from the command line
 - ros2 action send_goal <robotName>/drive_distance
 irobot_create_msgs/action/DriveDistance "{distance: 1}"
- Turn command from linux command line
 - ros2 action send_goal <robotName>/drive_distance irobot_create_msgs/action/RotateAngle "{angle: 1}"
 - angle is number of radians from current position

Driving the turtlebots

- Or create a publisher with a twist message
 - More on that soon

