Our Sensors

Admin

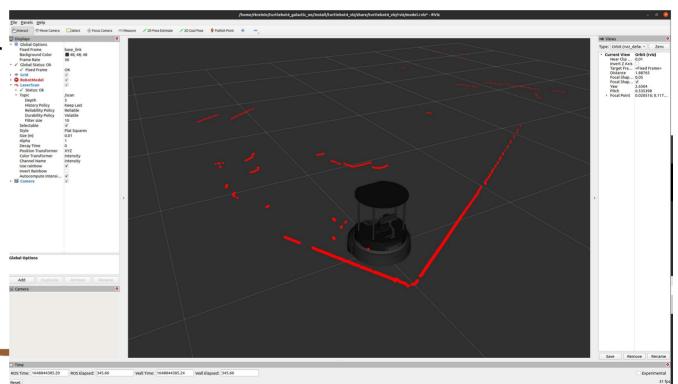
- Questions?
- Comments?
- Concerns?

Docs

- Check out the official docs where I pulled some of this from
- https://github.com/turtlebot/turtlebot4-hardware
- https://turtlebot.github.io/turtlebot4-user-manual/software/sensors .html

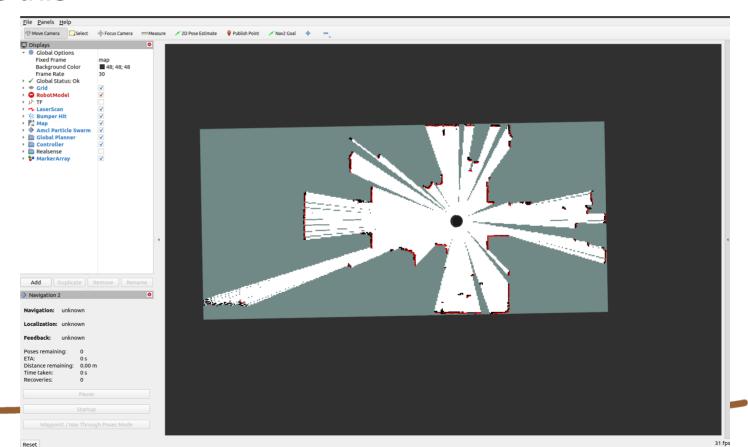
Laser Range Finder

- RPLIDAR A1M8
 - Spinning more or less all the time,
 - Sends laser light out,
 - Receives reflection back
 - *usually* one of the more accurate sensors.
 - Because of the spin, can get a pretty good 360 degree range into



Lidar II

 Lidar usually provides a depth map that might be interpreted like this


(the view we will use for project 1)

Lidar III

Or sometimes like this

Cliff Sensors

- The bottom of the Turtlebot4 is an iRobot Create
- There are four downward facing IR sensors that they call 'cliff sensors'
- IR sensors *kinda* detect distance
 - But really proximity
 - Same principle as lidar, but with infrared
- Mostly tied into the system at a lower level than we will work

Bump Sensor

- The Create 3 has a bump sensor
 - on/off toggle button with a great big cover
 - Mostly used at a lower level than we work
 - But state can be queried

Button (sensors)

- The Create 3 has two buttons
- oo and o
 - Use for basic on/off input for programs
 - State can be queried
 - And change in state can be watched
 - Often in projects 2-?? will want to begin autonomous program with a press

WheelDrop

Wheeldrop

- The wheeldrop is the spring on which the Create® 3 wheels sit. When the robot is lifted off of the ground, the spring is decompressed and the wheeldrop hazard is activated.
- Mostly used at a lower level than we work
 - But state can be queried

Front Facing IR Sensors

IR Proximity

- The IR proxmity sensors are located on the front of the bumper and are used for the wall follow action.
 The sensor data can be viewed on the /ir_intensity topic.
 - # This message provides the ir intensity readings
 - •
 - std msgs/Header header
 - irobot_create_msgs/IrIntensity[] readings

Slip and Stall

Slip and Stall are fusion of wheel and optical odometer sensors

Slip and Stall

- Wheel slip and stall is also detected by the Create® 3. The status can be viewed on the /slip_status and /stall_status topics.
- What is slip?
 - Lucky students?
- What is stall?
 - Another lucky student?

Kidnap Sensor

Kidnap

- The robot uses a fusion of sensor data to detect when it has been picked up and "kidnapped". Motors will be disabled in this state, and will re-enable when placed on the ground again. The /kidnap_status topic shows the current kidnap state.
- Again, usually works lower level than we work.
 - Will usually stop all running behaviors
- But can be watching for it.

Camera

- Camera
 - OAK-D Camera
 - 4K camera
 - Pair of additional sensors for depth information
 - On board processing for some on board object tracking.
 - One of the more expensive sensors on the robot.
- We'll begin by using rviz to see what the camera sees.

Additional Sensors

- There are several free USB ports to potentially support additional sensors.
 - We shall see if we get far enough to use more sensors.
- Grad students and first time use of robots.
 - It will be an exciting adventure.

Lets Try it

- Project 1 now or after talking about teleoperation
 - Depending on what time it is when we get here.