Sensors

Administrative

- Assignment
 - Read chapter 7 (125-141) in your book

Take Home summary about sensors

- Lots of kinds of sensors
- All sensors are noisy some more error prone than others
- Sensors return an incomplete description of the environment.
- Real sensors can rarely be accurately modeled/simulated.

Know what sense data represents

- Difference sensors return values with different units
 - Some return a raw value
 - Some return in particular unit
 - Know what units are being used
 - Use them consistently
 - Mars orbiter crash
 - https://www.wired.com/2010/11/1110mars-climate-observer-report/
 - Software processing sensor data did so in pounds
 - Software using data assumed it was in newtons
 - Oops crash

Sensors for robots

- In the early days,
 - Bespoke sensors were created for robots
 - Expensive
 - Time consuming
- Today most modern robot sensors were first developed for another industry
 - Transportation
 - Phones
 - Gaming
 - Etc.

Exercise

- Quick Exercise from the book
 - Think about the sensors that you are interacting with daily. What sensors do you have in your phone, in your kitchen, or in your car?

-

Wring every bit of information

- Wring every bit of that information out of those sensors
 - For example
 - GPS is usually for getting outdoor location
 - What else can you measure with it?

Active vs. Passive Sensors

- Active Sensors
 - Emit some sort of energy into the environment and measure the change/reaction in the environment
 - Common Examples?
 - From those who have worked with sensors before?

- Passive Sensors
 - Measure something (usually energy) already in the environment
 - Common Examples?
 - From those who have worked with sensors before?

Active vs. Passive Sensors

- Active Sensors
 - Emit some sort of energy into the environment and measure the change/reaction in the environment
 - Common Examples?
 - Sonar
 - Lidar
 - Infrared distance sensors
 - RFID

- Passive Sensors
 - Measure something (usually energy) already in the environment
 - Common Examples?
 - Temperature sensors
 - Light sensors
 - Accelerometer
 - Compass
 - Touch (button/whisker)

A bit more Jargon/Terminology

- Range: difference between the upper and lower values the sensor can sense
- Dynamic range: upper/lower value
- Sensor Resolution: the 'distance' (difference) between the smallest two real world values that provide a different value in the sensor
- Sensor Accuracy: The difference between the average sensor value and the actual real world value being measured
- Sensor Precision: statistical variation/range (or in lay terms, does the sensor produce the (nearly) same reading for the same real world conditions

Precision vs. Accuracy

- From your book:
- Figure 7.1. The cross corresponds to the true value of the signal. From left to right:
 - neither precise nor accurate,
 - precise but not accurate,
 - accurate but not precise,
 - accurate and precise.

Proprioception vs. Exteroception

- Proprioception
 - Sensing internal to the agent (robot in our case)

_

 Give me an example of human proprioception

- Exteroception
 - Sensing the world outside of the agent (robot in our case)

_

 Give me an example of human exteroception

Proprioception vs. Exteroception

- Proprioception
 - Sensing internal to the agent (robot in our case)

_

Give me an example of robot proprioception

- Exteroception
 - Sensing the world outside of the agent (robot in our case)

 Give me an example of robot exteroception

Proprioception in Robots

- Common Proprioception in robots (even relatively inexpensive ones)
 - Motor/Servo encoder. The motor/servo knows what angle the wheel is currently at.
 - Some older or really cheap motors don't but anything over \$25 usually does today
 - Accelerometer
 - How fast am I changing movement. How is this useful? What might we measure
 - Gyroscope
 - What is up
 - How is this useful

Proprioception in Robots

- Common Proprioception in robots (even relatively inexpensive ones)
 - Motor/Servo encoder. The motor/servo knows what angle the wheel is currently at.
 - Some older or really cheap motors don't but anything over \$25 usually does today
 - Accelerometer
 - How fast am I changing movement. How is this useful?
 - Very good for detecting crashes at least
 - Gyroscope
 - What is up
 - How is this useful
 - Am I about to fall over if I keep going on this slope?
 - The first robots we use only have encoders, but the drones have all three

More Proprioception

- Torque sensors : measure how much force is applied
 - Really important for bigger robots, not nearly as much for our smaller ones.
- Touch sensors
 - Whisker & button most common, but put a plate on a button and suddenly you have an "oh no! I hit something sensor"

Exteroception Sensors

- Most commonly used exteroception sensors: Sensors to measure distance
 - All (but one) are active sensors that put energy into the world, then measure the round trip time to reflection is received
 - Most common (in increasing order of both price and accuracy/usefulness)
 - InfraRed (IR) sensors
 - Sonar sensors
 - Lidar (Laser Range Finder) sensors
 - Occasionally use radar or stereo vision on more expensive robots.

Other Common Exteroception Sensors

- There are several other common exteroception sensors used in 'budget robotics'
 - Generally useful for a specific uses rather than generally useful
 - Light sensor
 - Measures the amount of light hitting the sensor
 - Put 'blinders' on it to make it directional.
 - Sound sensor
 - Detects sounds (sometimes in a particular frequency range) in the area
 - Loudness sensor
 - Similar to the sound sensor, but there is a potentiometer to adjust so you can get a value only after a particular volume is hit
 - What might we used these for?

