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Admin

● Take-home Midterm due.
● For next week, please listen 

to soft skills episode 446
– (we did this one already)
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Chapter 2 of pragmatic programmer

● If we haven't talked about it 
yet, do so here.
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Sprint Retrospective

● If not done earlier, lets do the 
sprint retrospective.
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Development Methodologies 

● What are some common development methodologies?
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Development Methodologies 

● What are some common development methodologies?
– Two most well known today are likely Agile and Waterfall
– Historical xtreme programming etc
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Development Methodologies 

● What are some common development methodologies?
– Two most well known today are likely Agile and Waterfall
– Lets describe Waterfall
– And Agile
– And tell why you would use each in the 2020s
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Self Documenting code?

● Decades long debate:
● Can code be truly self documenting?

– Do we really need comments?
– After all this can be the ultimate DRY violation
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– Make code as self documenting as possible – any comments needed is 
a failure of clear code/ is deodorant for ‘code smells’

● My take: 
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Self Documenting code?

● Decades long debate:
● Can code be truly self documenting?

– Do we really need comments?
– After all this can be the ultimate DRY violation

● My phd advisor's take.
● The ‘big 3’  books’ takes

– Make code as self documenting as possible – any comments needed is a 
failure of clear code/ is deodorant for ‘code smells’

● My take:

– As per books above, except that dynamically typed languages need a little 
more comment TLC. 
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Programming Style

● Programming style is important for self-documenting code

– Different languages have different style guides
– More on that later in the semester
– But follow the style guide
– Or better yet use an auto formatter

● Gofmt
● Rustfmt
● Python: just like Henry Ford: “any color you like ...”
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Comments

● In CS1 and CS2 (comp151 and comp152 here) instructors often tell 
you to comment your code
– Why?
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Comments

● In CS1 and CS2 (comp151 and comp152 here) instructors often tell 
you to comment your code
– Why?
– Often so we can tell what you thought you were writing.
– If you look back at the code from that era of your lives, you'll often find 

that you did not write what you think you did 
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Comments in production code

● In production code, comments should be relatively rare, and very 
meaningful.

● “Comments often are used as a deodorant.”
– — Martin Fowler and Kent Beck, Refactoring, page 87
– This book is from forever ago (1999ish)

● Comments are often deodorant for code smells, so mostly make 
your code better 
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The problem with comments in real life

● Orphaned comments 

– Page 54 of clean code
● Comment rot (page 785 in code complete)

– Comment written – then code is changed – but not comment
– To misquote Mark Twain:
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The problem with comments in real life

● Orphaned comments 

– Page 54 of clean code
● Comment rot (page 785 in code complete)

– Comment written – then code is changed – but not comment

● To misquote Mark Twain: there are three kinds of lies
– Lies! Damn Lies and old Comments!!
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So what comments do you still need?

● Legal comments

– These are barely for the code anyway
● Explaining why you chose to do it some way

● ToDo

– These are comments meant to go away 
–  explain why something doesn't make sense
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So what comments do you still need?

● Authors argue for 

– Acceptable range of values for a variable
● Though this should also be checked by your automated tests today.

– Limitations on input data
● Same as above – also enforce with tests

– Bits in a bit mask
● This falls under the obscure stuff that needs to be tracked
● What do I mean by Bit mask?
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So what comments do you still need?

● Warnings:

– Warn of the consequences of code
– Don't do this unless …

● Informative for bizarre needs

– Fixing a bug in a library that you don't own example
● Documentation comments

– Javadoc comments
– Python API documentation strings/comments
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My favorite comment quote

● I’ve seen this in more than one place, 

– “code should explain how (and what), the comments should explain 
why”

– Too true.
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Comments to avoid I

● Some comments are bad

– If someone else reading the comment has to read code elsewhere to 
know what the comment means

– Book: mumbling
● Redundant comments

– j=j+1; //increment j (huge DRY violation)
– Uh-huh because I failed comp151
– Note book has larger definition
– But awesome example on page 64 (Clean Code)(and next slide)
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Dry Violation comments
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Less than ideal comments

● Some really old projects (and there are still lots in production) have 
historical comments that are/were required
– Mandated comments

● Some employers (DoD was famous for this) require certain structures and strictures 
to be followed

● Maybe useless, but must have them

– Journal comments
● Make a comment at top of file everytime a change is made to the code
● This is what commit comments in the version control system are for today
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Comments to avoid II

● The pasto

– Copy – pasted code with comments
– Change code (clean code 66)
– Hello comment rot.

● Commented out code

– Now we do this in academia
– But for code that will go to production:

● Commented out code stays forever
● Too important to delete?
● Worse – multiline commented code
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Comments to avoid III

● Cute comments:

– Eg from stack overflow:
– /**
– * For the brave souls who get this far: You are the chosen ones,
– * the valiant knights of programming who toil away, without rest,
– * fixing our most awful code. To you, true saviors, kings of men,
– * I say this: never gonna give you up, never gonna let you down,
– * never gonna run around and desert you. Never gonna make you cry,
– * never gonna say goodbye. Never gonna tell a lie and hurt you.
– */
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Comments to avoid IV

● And bad for several reasons: (what are they?)

– // 

– // Dear maintainer:

– // 

– // Once you are done trying to 'optimize' this routine,

– // and have realized what a terrible mistake that was,

– // please increment the following counter as a warning

– // to the next guy:

– // 

– // total_hours_wasted_here = 42

– // 
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Again, don't be cute



  29

Patting yourself on the back comments

● From Code Complete book (pg 792)

– MOV AX, 723h ; R. I. P. L. V. B.
● RIP Ludvig Van Beethoven 
● Died 1827(dec) which is?
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Patting yourself on the back comments

● From Code Complete book (pg 792)

– MOV AX, 723h ; R. I. P. L. V. B.
● RIP Ludvig Van Beethoven 
● Died 1827(dec) which is?
● Yup 723 hex
● What does Beethoven have to do with anything? Nothing!
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Comment Relevence

● Make comments relevant

– stop(); // Hammertime!
– Probably was very cute 15(World of Warcraft)-30 (original song release) 

years ago
– “You see kids...” (one day this meme will be as obsolete as your parents 

music)
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Got this one in 2018 (Bee movie 10th anniversary)
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Got this one from reddit in 2023

● try {
●     throw "the truth"; // you want the truth
● } catch (int i) { // you can't handle the truth
● }
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And the “grand prize”

● Be careful, someday your irritation might get you on the front page 
too:

● RichardIsAFuckingIdiotControl

– // The main problem is the BindCompany() method,
– // which he hoped would be able to do everything. I hope he dies.

● http://mcfunley.com/from-the-annals-of-dubious-achievement

http://mcfunley.com/from-the-annals-of-dubious-achievement
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Final word
● As much as possible, let the code speak for itself
● Use the comments to tell why
● Use comments sparingly when you really need to
● Assume that one of your co-workers will one day come from a 

country that does not use English (and especially American idioms 
and pop culture) 
– So don't use pop culture in your code.
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