

 2

Admin

● Take-home Midterm due.
● For next week, please listen

to soft skills episode 446
– (we did this one already)

 3

Chapter 2 of pragmatic programmer

● If we haven't talked about it
yet, do so here.

 4

Sprint Retrospective

● If not done earlier, lets do the
sprint retrospective.

 5

Development Methodologies

● What are some common development methodologies?

 6

Development Methodologies

● What are some common development methodologies?
– Two most well known today are likely Agile and Waterfall
– Historical xtreme programming etc

 7

Development Methodologies

● What are some common development methodologies?
– Two most well known today are likely Agile and Waterfall
– Lets describe Waterfall
– And Agile
– And tell why you would use each in the 2020s

 8

Self Documenting code?

● Decades long debate:
● Can code be truly self documenting?

– Do we really need comments?
– After all this can be the ultimate DRY violation

 9

Self Documenting code?

● Decades long debate:
● Can code be truly self documenting?

– Do we really need comments?
– After all this can be the ultimate DRY violation

● My phd advisor's take.
●

 10

Self Documenting code?

● Decades long debate:
● Can code be truly self documenting?

– Do we really need comments?
– After all this can be the ultimate DRY violation

● My phd advisor's take.
● The ‘big 3’ books’ takes

– Make code as self documenting as possible – any comments needed is
a failure of clear code/ is deodorant for ‘code smells’

● My take:

 11

Self Documenting code?

● Decades long debate:
● Can code be truly self documenting?

– Do we really need comments?
– After all this can be the ultimate DRY violation

● My phd advisor's take.
● The ‘big 3’ books’ takes

– Make code as self documenting as possible – any comments needed is a
failure of clear code/ is deodorant for ‘code smells’

● My take:

– As per books above, except that dynamically typed languages need a little
more comment TLC.

 12

Programming Style

● Programming style is important for self-documenting code

– Different languages have different style guides
– More on that later in the semester
– But follow the style guide
– Or better yet use an auto formatter

● Gofmt
● Rustfmt
● Python: just like Henry Ford: “any color you like ...”

 13

Comments

● In CS1 and CS2 (comp151 and comp152 here) instructors often tell
you to comment your code
– Why?

 14

Comments

● In CS1 and CS2 (comp151 and comp152 here) instructors often tell
you to comment your code
– Why?
– Often so we can tell what you thought you were writing.
– If you look back at the code from that era of your lives, you'll often find

that you did not write what you think you did

 15

Comments in production code

● In production code, comments should be relatively rare, and very
meaningful.

● “Comments often are used as a deodorant.”
– — Martin Fowler and Kent Beck, Refactoring, page 87
– This book is from forever ago (1999ish)

● Comments are often deodorant for code smells, so mostly make
your code better

 16

The problem with comments in real life

● Orphaned comments

– Page 54 of clean code
● Comment rot (page 785 in code complete)

– Comment written – then code is changed – but not comment
– To misquote Mark Twain:

 17

The problem with comments in real life

● Orphaned comments

– Page 54 of clean code
● Comment rot (page 785 in code complete)

– Comment written – then code is changed – but not comment

● To misquote Mark Twain: there are three kinds of lies
– Lies! Damn Lies and old Comments!!

 18

So what comments do you still need?

● Legal comments

– These are barely for the code anyway
● Explaining why you chose to do it some way

● ToDo

– These are comments meant to go away
– explain why something doesn't make sense

 19

So what comments do you still need?

● Authors argue for

– Acceptable range of values for a variable
● Though this should also be checked by your automated tests today.

– Limitations on input data
● Same as above – also enforce with tests

– Bits in a bit mask
● This falls under the obscure stuff that needs to be tracked
● What do I mean by Bit mask?

 20

So what comments do you still need?

● Warnings:

– Warn of the consequences of code
– Don't do this unless …

● Informative for bizarre needs

– Fixing a bug in a library that you don't own example
● Documentation comments

– Javadoc comments
– Python API documentation strings/comments

 21

My favorite comment quote

● I’ve seen this in more than one place,

– “code should explain how (and what), the comments should explain
why”

– Too true.

 22

Comments to avoid I

● Some comments are bad

– If someone else reading the comment has to read code elsewhere to
know what the comment means

– Book: mumbling
● Redundant comments

– j=j+1; //increment j (huge DRY violation)
– Uh-huh because I failed comp151
– Note book has larger definition
– But awesome example on page 64 (Clean Code)(and next slide)

 23

Dry Violation comments

 24

Less than ideal comments

● Some really old projects (and there are still lots in production) have
historical comments that are/were required
– Mandated comments

● Some employers (DoD was famous for this) require certain structures and strictures
to be followed

● Maybe useless, but must have them

– Journal comments
● Make a comment at top of file everytime a change is made to the code
● This is what commit comments in the version control system are for today

 25

Comments to avoid II

● The pasto

– Copy – pasted code with comments
– Change code (clean code 66)
– Hello comment rot.

● Commented out code

– Now we do this in academia
– But for code that will go to production:

● Commented out code stays forever
● Too important to delete?
● Worse – multiline commented code

 26

Comments to avoid III

● Cute comments:

– Eg from stack overflow:
– /**
– * For the brave souls who get this far: You are the chosen ones,
– * the valiant knights of programming who toil away, without rest,
– * fixing our most awful code. To you, true saviors, kings of men,
– * I say this: never gonna give you up, never gonna let you down,
– * never gonna run around and desert you. Never gonna make you cry,
– * never gonna say goodbye. Never gonna tell a lie and hurt you.
– */

 27

Comments to avoid IV

● And bad for several reasons: (what are they?)

– //

– // Dear maintainer:

– //

– // Once you are done trying to 'optimize' this routine,

– // and have realized what a terrible mistake that was,

– // please increment the following counter as a warning

– // to the next guy:

– //

– // total_hours_wasted_here = 42

– //

 28

Again, don't be cute

 29

Patting yourself on the back comments

● From Code Complete book (pg 792)

– MOV AX, 723h ; R. I. P. L. V. B.
● RIP Ludvig Van Beethoven
● Died 1827(dec) which is?

 30

Patting yourself on the back comments

● From Code Complete book (pg 792)

– MOV AX, 723h ; R. I. P. L. V. B.
● RIP Ludvig Van Beethoven
● Died 1827(dec) which is?
● Yup 723 hex
● What does Beethoven have to do with anything? Nothing!

 31

Comment Relevence

● Make comments relevant

– stop(); // Hammertime!
– Probably was very cute 15(World of Warcraft)-30 (original song release)

years ago
– “You see kids...” (one day this meme will be as obsolete as your parents

music)

 32

Got this one in 2018 (Bee movie 10th anniversary)

 33

Got this one from reddit in 2023

● try {
● throw "the truth"; // you want the truth
● } catch (int i) { // you can't handle the truth
● }

 34

And the “grand prize”

● Be careful, someday your irritation might get you on the front page
too:

● RichardIsAFuckingIdiotControl

– // The main problem is the BindCompany() method,
– // which he hoped would be able to do everything. I hope he dies.

● http://mcfunley.com/from-the-annals-of-dubious-achievement

http://mcfunley.com/from-the-annals-of-dubious-achievement

 35

Final word
● As much as possible, let the code speak for itself
● Use the comments to tell why
● Use comments sparingly when you really need to
● Assume that one of your co-workers will one day come from a

country that does not use English (and especially American idioms
and pop culture)
– So don't use pop culture in your code.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

