
Code Smells, Names and More
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Admin

●Retrospective for sprint 3
● In groups 

●Last Quiz coming next week
●Reading Assignment

●
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Code Metrics
● There have been many metrics for measuring code over the years

– Lines/day
● Or number of lines period

– Bugs/line
● Discuss bug bounty economy

– Cyclomatic Complexity
● How many paths are there through the code?
● How hard will this be to test?

– Class Coupling

– Churn
● How often is this part of the code edited/committed in git?

– Test coverage/’maintainability index’

– Which is best metric (here or something else)?
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Best Code metric

● I agree with several others 
(including the old clean code 
book) 
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Code Review

● Some of you have done Code reviews
– So what are they?
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Code Review

● Some of you have done Code reviews
– As academics all too often we toss the code together just in time for due date 

and never return to it.

– In industry this is only going to happen to companies that go bankrupt very 
quickly

– So we have someone(s) look at the code before we let it go to production.

●



  7

Code Review

● Some of you have done Code reviews
– Code review might be a formal review scheduled by management

● If defense contractor software this is (was?) required.
● Original author may or may not be present.
● For good code original author not needed – it is clear what the code does

– Code review might be informal – from time to time the team looks over the 
code it is responsible for.

● A few team members look over a package every X units of time.
● Pair programming example
● Or even pull request approval
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Code review

● To be successful most code reviews are peer review.

– Management should not be present
– Might not be possible if review is result of epic fail

● Iowa Caucus app 2020 perhaps

– Hawaii missile warning of 2018
– Boeing 737 Max
– Review should 

● Spot bugs and vulnerabilities
● Find possible un-clean code
● Produce recommendations for cleaner code.



  9

Automated Code Review

● Today most of the style code review work is done by automated 
tools.

– e.g. flake8 https://flake8.pycqa.org/en/latest/ for python
– Or checkstyle for java
– If the style check fails, auto reject a code submission.
– Benefits?

https://flake8.pycqa.org/en/latest/
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Automated Code Review

● Today most of the style code review work is done by automated 
tools.

– e.g. flake8 https://flake8.pycqa.org/en/latest/ for python
– Or checkstyle for java
– If the style check fails, auto reject a code submission.
– Benefits?
– No ego

● No hurt feelings when John used the wrong spacing scheme again and tried to 
submit that code.

https://flake8.pycqa.org/en/latest/
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Pull/merge Requests

● A very common place for informal code reviews is a pull request

– Pull requests?
– Or merge requests?  
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Pull Requests

● A very common place for informal code reviews is a pull request

– Pull requests?
– Github introduced workflow

– Back when I was doing professional software dev we just committed 
to the source repository after testing a bit ourselves

– Today almost no one does that. You write your code, then make a 
‘pull request’ to have your code integrated with the main codebase.     
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Code

● Over the last 45 years or so

– Programming languages of choice → ever higher level of abstraction
– Top languages of the era

● Assembler → C → c++ → java → a plethora of specialized higher abstraction 
languages

● Of course in each era there were other languages

– With automatic tools to convert UML to code skeletons and lego brick and 
MIT app inventor

– And of course ChatGPT and friends will replace us right?
● https://blog.bitsrc.io/i-asked-chat-gpt-to-build-a-to-do-app-have-we-finally-met-our-

replacement-ad347ad74c51

https://blog.bitsrc.io/i-asked-chat-gpt-to-build-a-to-do-app-have-we-finally-met-our-replacement-ad347ad74c51
https://blog.bitsrc.io/i-asked-chat-gpt-to-build-a-to-do-app-have-we-finally-met-our-replacement-ad347ad74c51
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Code
● Over the last 45 years or so

– Programming languages of choice → ever higher level of abstraction
– Top languages of the era

● Assembler → C → c++ → java → a plethora of specialized higher abstraction languages
● Of course in each era there were other languages

– With automatic tools to convert UML to code skeletons and lego brick and MIT 
app inventor

– And of course ChatGPT and friends will replace us right?
● https://blog.bitsrc.io/i-asked-chat-gpt-to-build-a-to-do-app-have-we-finally-met-our-replacem

ent-ad347ad74c51

– And Gartner says we’ll see some development jobs turn into utilities:
– https://www.gartner.com/newsroom/id/3707317

● Do we need code any more?

https://blog.bitsrc.io/i-asked-chat-gpt-to-build-a-to-do-app-have-we-finally-met-our-replacement-ad347ad74c51
https://blog.bitsrc.io/i-asked-chat-gpt-to-build-a-to-do-app-have-we-finally-met-our-replacement-ad347ad74c51
https://www.gartner.com/newsroom/id/3707317
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Code
● Over the last 45 years or so

– Programming languages of choice → ever higher level of abstraction
– Top languages of the era

● Assembler → C → c++ → java → a plethora of specialized higher abstraction 
languages

● Of course in each era there were other languages

– And Gartner says we’ll see some development jobs turn into utilities:
– https://www.gartner.com/newsroom/id/3707317

– Do we need code any more?
● Yes!! it may not be as code-y as the old days – but it is code.
● No need for assembler in 2000s
● Fewer people need to do low level stuff today, but

https://www.gartner.com/newsroom/id/3707317
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Code Changes

● I talked about this briefly weeks ago, but when making a code 
change to a method, what is the activity that you spend the most 
time on?
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Code Changes

● I talked about this briefly weeks ago, but when making a code change 
to a method, what is the activity that you spend the most time on?

– Reading other code
● Need to read the rest of the class
● Need to read places that call this method
● Need to read other methods that this one calls

– Need to understand the context of this code change
– That code that you write will be read by many people
– Clean Code motto: leave the code a little better than you found it.
– Pragmatic Programmer Corollary:

● Fix the broken windows. 
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Names

● What do we name?
● What did your (undergrad) software engineering class say about 

names?
– I know Professor Matta covers this.
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Names

● What do we name?
● We name everything in our code

– Variables:
● Local variables, parameters, global variables, member data

– Functions:
● Methods, member functions, functions, procedures etc.

– Classes
– Filenames
– Executable and library names

● So pick good names!!!

● What did your (undergrad) software engineering class say about names?
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Make clear names

● You've heard this from me and others for years now

● But your names should tell you what is stored there

● int t;

● Is this a good name?
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Make clear names

● You've heard this from me and others for years now

● But your names should tell you what is stored there

● int t;

● Is this a good name?

– Of course not – and you told me why right?
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Make clear names

● You've heard this from me and others for years now

● But your names should tell you what is stored there

● int t;

● Is this a good name?

– Of course not – and you told me why right?
● int timeElapsed;

– How about this? Is this a good name?
–
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Make clear names

● You've heard this from me and others for years now

● But your names should tell you what is stored there

● int t;

● Is this a good name?

– Of course not – and you told me why right?
● int timeElapsed;

– How about this? Is this a good name?
– Better – but still needs work – how can we fix it?
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Make clear names

● You've heard this from me and others for years now

● But your names should tell you what is stored there

● int timeElapsedinSeconds;

● Now this actually tells you what is stored in this variable – no need for 
a comment.

● If only the Mars Climate Orbiter Team had used such good names.

https://mars.nasa.gov/msp98/news/mco990930.html
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One Character Variable names

● When and why are one character variable names ok
– Because usually they are not



  26

Avoid Types in a name

● Avoid having a type mentioned in the variable name

– AccountList 
– NameString
– ClassName
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Avoid Types in Name

● Avoid having a type mentioned in the variable name

– AccountList (what happens when we switch to a hashtable?)  
– NameString (what about when it becomes a char array?)
– ClassName (we swapped out for a struct?)

● Putting type names sets us up for difficulty in maintaining code
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Lying Code

● Who ya gonna believe – my comment or that lying code?

– You'd think I wouldn't have to do this one. 
– Don't make your code lie
– int name; //the student's bannerID

● So what if the comment is correct!? It doesn't make up for the lying variable name
● Or worse yet: int nameString

– set<account> accountList;

– String studentClass;

– Painful – and all too common among students
● And impossible to maintain.
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Spelling Mistakes

● I used joke at the board,

– But spelling matters. Auto spell check is available everywhere these days
– Don't rely on spelling mistakes to make it compile
– int foo(int number, Section klass){

● int numb3r; //I needed another copy locally
● ….
● }

– No!!!!!!!!!
– And klass? Really!!??!
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Make Autocomplete your friend

● Make your names distinct enough

– so that when auto complete makes a suggestion, you'll know which one to 
choose

– Everyone has auto complete – but make it easy – you’ve seen how 
pycharm/intellij/VS code ‘helps’ sometimes

– In six months
– getCurrentStudent()
– getCurrent()
– getCurrentStudentInfo()
– Hmmm which do I call and when? 
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Autocomplete and AI make longer names fine

● But don't be silly about it
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oO0 l1L

● Ok – how about avoiding O and l unless it is very clear in 
context what they are?

– What is the title string?
– If you can't tell instantly, change the variable name
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Class and Method names

● You’ve been told since CS2
– Classes represent objects/nouns

● So use a noun to name it
● ManageDatabase is a bad name for a class

– Methods represent verbs/actions
● So use a verb for the methods.
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Making the point with humor
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Don’t be cute
● Don't be cute and don't pun

– HolyHandGrenade or anExParrot
● Everyone with enough geek cred over 30 or 35 should know this – do you?
● Not likely – don't be cute – it doesn't last

– Don't pun either
● Its all fun when you are doing it

– In 20 years when the code is still in use its just annoying
– Really how about  “don’t tase me bro”  or the code below, both only 14 

years old, or a Tide Pods reference? (what maybe 6 years?)
– Today it might be a variable called upDog
–  



  36

Don’t Be an Example
● Don’t be an example for a future version of this class
●
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Not just class and variable names

● struct nelson_mandela 
*NelsonMandela = (struct 
nelson_mandela 
*)malloc(sizeof(struct 
nelson_mandela));

●

● /* a few pages later ... */
●

● free(NelsonMandela);

● Even file names
– A perl file called
– doeeeeeeiiiiiiiit.pl
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Final Thoughts on
 Readability
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Related: Software Version Numbers

● You’ve seen version numbers

– What do they mean?
– What are the two widely used version numbering systems in use today?

● Semantic versioning and Calendar Versioning (CalVer)
● What do these mean?
● What does Ubuntu version 22.04 mean?
● What does gcc  7.4.0  mean?
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More reading

● Some abridged summaries
● https://blog.aspiresys.pl/technology/express-names-in-code-bad-vs-

clean/
● https://hilton.org.uk/blog/naming-smells
● https://www.lesswrong.com/posts/NYaLudjSqsYtZDB2t/bad-names-

make-you-open-the-box
● And with a warning that it is reddit, plenty of people sharing 

nonsense, including code they thought was hilarious as teenagers
– You have been warned.
– https://www.reddit.com/r/programming/comments/klhlv/what_is_the_worst

_classvariablefunction_name_you/
–  

https://blog.aspiresys.pl/technology/express-names-in-code-bad-vs-clean/
https://blog.aspiresys.pl/technology/express-names-in-code-bad-vs-clean/
https://hilton.org.uk/blog/naming-smells
https://www.lesswrong.com/posts/NYaLudjSqsYtZDB2t/bad-names-make-you-open-the-box
https://www.lesswrong.com/posts/NYaLudjSqsYtZDB2t/bad-names-make-you-open-the-box
https://www.reddit.com/r/programming/comments/klhlv/what_is_the_worst_classvariablefunction_name_you/
https://www.reddit.com/r/programming/comments/klhlv/what_is_the_worst_classvariablefunction_name_you/
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Last Word

● Last word

– Conventions in a language 
are important

– But they are just that, 
conventions. The key is to 
make the software easy to 
read and therefore easy to 
change.
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