
Code Smells, Names and More

 2

Admin

●Retrospective for sprint 3
● In groups

●Last Quiz coming next week
●Reading Assignment

●

 3

Code Metrics
● There have been many metrics for measuring code over the years

– Lines/day
● Or number of lines period

– Bugs/line
● Discuss bug bounty economy

– Cyclomatic Complexity
● How many paths are there through the code?
● How hard will this be to test?

– Class Coupling

– Churn
● How often is this part of the code edited/committed in git?

– Test coverage/’maintainability index’

– Which is best metric (here or something else)?

 4

Best Code metric

● I agree with several others
(including the old clean code
book)

 5

Code Review

● Some of you have done Code reviews
– So what are they?

 6

Code Review

● Some of you have done Code reviews
– As academics all too often we toss the code together just in time for due date

and never return to it.

– In industry this is only going to happen to companies that go bankrupt very
quickly

– So we have someone(s) look at the code before we let it go to production.

●

 7

Code Review

● Some of you have done Code reviews
– Code review might be a formal review scheduled by management

● If defense contractor software this is (was?) required.
● Original author may or may not be present.
● For good code original author not needed – it is clear what the code does

– Code review might be informal – from time to time the team looks over the
code it is responsible for.

● A few team members look over a package every X units of time.
● Pair programming example
● Or even pull request approval

 8

Code review

● To be successful most code reviews are peer review.

– Management should not be present
– Might not be possible if review is result of epic fail

● Iowa Caucus app 2020 perhaps

– Hawaii missile warning of 2018
– Boeing 737 Max
– Review should

● Spot bugs and vulnerabilities
● Find possible un-clean code
● Produce recommendations for cleaner code.

 9

Automated Code Review

● Today most of the style code review work is done by automated
tools.

– e.g. flake8 https://flake8.pycqa.org/en/latest/ for python
– Or checkstyle for java
– If the style check fails, auto reject a code submission.
– Benefits?

https://flake8.pycqa.org/en/latest/

 10

Automated Code Review

● Today most of the style code review work is done by automated
tools.

– e.g. flake8 https://flake8.pycqa.org/en/latest/ for python
– Or checkstyle for java
– If the style check fails, auto reject a code submission.
– Benefits?
– No ego

● No hurt feelings when John used the wrong spacing scheme again and tried to
submit that code.

https://flake8.pycqa.org/en/latest/

 11

Pull/merge Requests

● A very common place for informal code reviews is a pull request

– Pull requests?
– Or merge requests?

 12

Pull Requests

● A very common place for informal code reviews is a pull request

– Pull requests?
– Github introduced workflow

– Back when I was doing professional software dev we just committed
to the source repository after testing a bit ourselves

– Today almost no one does that. You write your code, then make a
‘pull request’ to have your code integrated with the main codebase.

 13

Code

● Over the last 45 years or so

– Programming languages of choice → ever higher level of abstraction
– Top languages of the era

● Assembler → C → c++ → java → a plethora of specialized higher abstraction
languages

● Of course in each era there were other languages

– With automatic tools to convert UML to code skeletons and lego brick and
MIT app inventor

– And of course ChatGPT and friends will replace us right?
● https://blog.bitsrc.io/i-asked-chat-gpt-to-build-a-to-do-app-have-we-finally-met-our-

replacement-ad347ad74c51

https://blog.bitsrc.io/i-asked-chat-gpt-to-build-a-to-do-app-have-we-finally-met-our-replacement-ad347ad74c51
https://blog.bitsrc.io/i-asked-chat-gpt-to-build-a-to-do-app-have-we-finally-met-our-replacement-ad347ad74c51

 14

Code
● Over the last 45 years or so

– Programming languages of choice → ever higher level of abstraction
– Top languages of the era

● Assembler → C → c++ → java → a plethora of specialized higher abstraction languages
● Of course in each era there were other languages

– With automatic tools to convert UML to code skeletons and lego brick and MIT
app inventor

– And of course ChatGPT and friends will replace us right?
● https://blog.bitsrc.io/i-asked-chat-gpt-to-build-a-to-do-app-have-we-finally-met-our-replacem

ent-ad347ad74c51

– And Gartner says we’ll see some development jobs turn into utilities:
– https://www.gartner.com/newsroom/id/3707317

● Do we need code any more?

https://blog.bitsrc.io/i-asked-chat-gpt-to-build-a-to-do-app-have-we-finally-met-our-replacement-ad347ad74c51
https://blog.bitsrc.io/i-asked-chat-gpt-to-build-a-to-do-app-have-we-finally-met-our-replacement-ad347ad74c51
https://www.gartner.com/newsroom/id/3707317

 15

Code
● Over the last 45 years or so

– Programming languages of choice → ever higher level of abstraction
– Top languages of the era

● Assembler → C → c++ → java → a plethora of specialized higher abstraction
languages

● Of course in each era there were other languages

– And Gartner says we’ll see some development jobs turn into utilities:
– https://www.gartner.com/newsroom/id/3707317

– Do we need code any more?
● Yes!! it may not be as code-y as the old days – but it is code.
● No need for assembler in 2000s
● Fewer people need to do low level stuff today, but

https://www.gartner.com/newsroom/id/3707317

 16

Code Changes

● I talked about this briefly weeks ago, but when making a code
change to a method, what is the activity that you spend the most
time on?

 17

Code Changes

● I talked about this briefly weeks ago, but when making a code change
to a method, what is the activity that you spend the most time on?

– Reading other code
● Need to read the rest of the class
● Need to read places that call this method
● Need to read other methods that this one calls

– Need to understand the context of this code change
– That code that you write will be read by many people
– Clean Code motto: leave the code a little better than you found it.
– Pragmatic Programmer Corollary:

● Fix the broken windows.

 18

Names

● What do we name?
● What did your (undergrad) software engineering class say about

names?
– I know Professor Matta covers this.

 19

Names

● What do we name?
● We name everything in our code

– Variables:
● Local variables, parameters, global variables, member data

– Functions:
● Methods, member functions, functions, procedures etc.

– Classes
– Filenames
– Executable and library names

● So pick good names!!!

● What did your (undergrad) software engineering class say about names?

 20

Make clear names

● You've heard this from me and others for years now

● But your names should tell you what is stored there

● int t;

● Is this a good name?

 21

Make clear names

● You've heard this from me and others for years now

● But your names should tell you what is stored there

● int t;

● Is this a good name?

– Of course not – and you told me why right?

 22

Make clear names

● You've heard this from me and others for years now

● But your names should tell you what is stored there

● int t;

● Is this a good name?

– Of course not – and you told me why right?
● int timeElapsed;

– How about this? Is this a good name?
–

 23

Make clear names

● You've heard this from me and others for years now

● But your names should tell you what is stored there

● int t;

● Is this a good name?

– Of course not – and you told me why right?
● int timeElapsed;

– How about this? Is this a good name?
– Better – but still needs work – how can we fix it?

 24

Make clear names

● You've heard this from me and others for years now

● But your names should tell you what is stored there

● int timeElapsedinSeconds;

● Now this actually tells you what is stored in this variable – no need for
a comment.

● If only the Mars Climate Orbiter Team had used such good names.

https://mars.nasa.gov/msp98/news/mco990930.html

 25

One Character Variable names

● When and why are one character variable names ok
– Because usually they are not

 26

Avoid Types in a name

● Avoid having a type mentioned in the variable name

– AccountList
– NameString
– ClassName

 27

Avoid Types in Name

● Avoid having a type mentioned in the variable name

– AccountList (what happens when we switch to a hashtable?)
– NameString (what about when it becomes a char array?)
– ClassName (we swapped out for a struct?)

● Putting type names sets us up for difficulty in maintaining code

 28

Lying Code

● Who ya gonna believe – my comment or that lying code?

– You'd think I wouldn't have to do this one.
– Don't make your code lie
– int name; //the student's bannerID

● So what if the comment is correct!? It doesn't make up for the lying variable name
● Or worse yet: int nameString

– set<account> accountList;

– String studentClass;

– Painful – and all too common among students
● And impossible to maintain.

 29

Spelling Mistakes

● I used joke at the board,

– But spelling matters. Auto spell check is available everywhere these days
– Don't rely on spelling mistakes to make it compile
– int foo(int number, Section klass){

● int numb3r; //I needed another copy locally
● ….
● }

– No!!!!!!!!!
– And klass? Really!!??!

 30

Make Autocomplete your friend

● Make your names distinct enough

– so that when auto complete makes a suggestion, you'll know which one to
choose

– Everyone has auto complete – but make it easy – you’ve seen how
pycharm/intellij/VS code ‘helps’ sometimes

– In six months
– getCurrentStudent()
– getCurrent()
– getCurrentStudentInfo()
– Hmmm which do I call and when?

 31

Autocomplete and AI make longer names fine

● But don't be silly about it

 32

oO0 l1L

● Ok – how about avoiding O and l unless it is very clear in
context what they are?

– What is the title string?
– If you can't tell instantly, change the variable name

 33

Class and Method names

● You’ve been told since CS2
– Classes represent objects/nouns

● So use a noun to name it
● ManageDatabase is a bad name for a class

– Methods represent verbs/actions
● So use a verb for the methods.

 34

Making the point with humor

 35

Don’t be cute
● Don't be cute and don't pun

– HolyHandGrenade or anExParrot
● Everyone with enough geek cred over 30 or 35 should know this – do you?
● Not likely – don't be cute – it doesn't last

– Don't pun either
● Its all fun when you are doing it

– In 20 years when the code is still in use its just annoying
– Really how about “don’t tase me bro” or the code below, both only 14

years old, or a Tide Pods reference? (what maybe 6 years?)
– Today it might be a variable called upDog
–

 36

Don’t Be an Example
● Don’t be an example for a future version of this class
●

 37

Not just class and variable names

● struct nelson_mandela
*NelsonMandela = (struct
nelson_mandela
*)malloc(sizeof(struct
nelson_mandela));

●

● /* a few pages later ... */
●

● free(NelsonMandela);

● Even file names
– A perl file called
– doeeeeeeiiiiiiiit.pl

 38

Final Thoughts on
 Readability

 39

Related: Software Version Numbers

● You’ve seen version numbers

– What do they mean?
– What are the two widely used version numbering systems in use today?

● Semantic versioning and Calendar Versioning (CalVer)
● What do these mean?
● What does Ubuntu version 22.04 mean?
● What does gcc 7.4.0 mean?

 40

More reading

● Some abridged summaries
● https://blog.aspiresys.pl/technology/express-names-in-code-bad-vs-

clean/
● https://hilton.org.uk/blog/naming-smells
● https://www.lesswrong.com/posts/NYaLudjSqsYtZDB2t/bad-names-

make-you-open-the-box
● And with a warning that it is reddit, plenty of people sharing

nonsense, including code they thought was hilarious as teenagers
– You have been warned.
– https://www.reddit.com/r/programming/comments/klhlv/what_is_the_worst

_classvariablefunction_name_you/
–

https://blog.aspiresys.pl/technology/express-names-in-code-bad-vs-clean/
https://blog.aspiresys.pl/technology/express-names-in-code-bad-vs-clean/
https://hilton.org.uk/blog/naming-smells
https://www.lesswrong.com/posts/NYaLudjSqsYtZDB2t/bad-names-make-you-open-the-box
https://www.lesswrong.com/posts/NYaLudjSqsYtZDB2t/bad-names-make-you-open-the-box
https://www.reddit.com/r/programming/comments/klhlv/what_is_the_worst_classvariablefunction_name_you/
https://www.reddit.com/r/programming/comments/klhlv/what_is_the_worst_classvariablefunction_name_you/

 41

Last Word

● Last word

– Conventions in a language
are important

– But they are just that,
conventions. The key is to
make the software easy to
read and therefore easy to
change.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

