
Automated Testing, Test Driven 
Development
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Assignment

●

● For next week Listen to
● Fallthrough epidode one-ish

– https://podtail.com/podcast/fallthrough/war-stories/  

● Project1
– Any questions on the current sprint?

https://podtail.com/podcast/fallthrough/war-stories/
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Automated Testing

● Test Driven Development vs Automated Testing
– Let's have a lucky volunteer or few help explain the difference between 

these two?
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Test Driven Development

● Today Test Driven Development means at least you write the tests 
before the production code that they test
– Failing tests before code
– Then write code
– When tests pass then your software is done.
–
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And the Original TDD

● The Original TDD
– And the purist version even today

● Write one test, let it fail, then write the production code to make it pass
● The write one more test, and then make it pass, repeat

– Want to write a webapp?
● Before you do anything – including installing the web app libraries

– Write a test.
– When it fails do something.

– So purist: write test, and only write real code when test fails.

● What seems like it might go wrong here?
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TDD The Original Way
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Automated Tests

● Pretty much every serious software project uses Automated Tests 
today
– Code that evaluates the "production code" and run automatically by the CI 

system
● And should be run the the programmer on their local machine first.

– May or may not exercise the entire code base, but does test/exercise at 
least part of it.

● Not everyone believes in TDD
– But yes to automated tests.
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Kinds of Tests

● There are several ways to classify tests
● One Categorization that is used fairly commonly

– Unit tests
– Functional tests
– Acceptance tests
– What are each of these? What do they do?
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Types of Tests

● Unit tests
– Item by item – function by function tests

● Functional tests
– Does the app do what it is supposed to do?

● Acceptance tests
– Does the app do what the client thinks it is supposed to do?
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Why?

● So what are the tests supposed to do for us in Test Driven 
Development or other methods of using automated tests?

– Why has Testing (TDD?) become so accepted in the last 10-15 years?
● Going from something more avant-garde that many managers resisted to 

"table stakes" at most software development places?  

– Well actually some people still call it TDD but ‘automated tests’ might 
be a better term

– What does Automated testing buy us? (especially with CI)
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Why?
● So what are the tests supposed to do for us in Test Driven Development 

or other methods of using automated tests?
– Why has Testing (TDD?) become so accepted in the last 10-15 years?

● Going from something more avant-garde that many managers resisted to "table 
stakes" at most software development places?  

– Well actually some people still call it TDD but ‘automated tests’ might be a 
better term

– What does Automated testing buy us? (especially with CI)
– Tests are run every time code is compiled/interpreted.
– Tests become an extension of the compilers ability to catch errors.
– Always better to let the compiler catch the error.
– Why?

– What does it buy us?
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TDD vs Automated Tests

● Very few people do old-school TDD today
● But the automated tests technique are still valuable
● Automated tests of some sort are more or less mandatory today.
● Turn your specs into tests

– Unit tests
– And functional tests
– Write them,
– Then write the code (or the other way around)
– Then run the tests
– Every time you change anything and build

● Run all tests again 
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Assignment

● For those of you new to automated testing
– Read a couple of introductions

● https://katalon.com/resources-center/blog/what-is-automation-testing
● https://medium.com/tenable-techblog/automation-testing-with-pytest-444c8b34ead2

– And a quick look at doing some of this in pytest (we'll look at some examples 
later)

● https://bas.codes/posts/python-pytest-introduction
●

– For those of you who have done automation tests before let's move on

https://katalon.com/resources-center/blog/what-is-automation-testing
https://medium.com/tenable-techblog/automation-testing-with-pytest-444c8b34ead2
https://bas.codes/posts/python-pytest-introduction
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Unit Tests

● First an easiest tests to understand/automate are Unit Tests

● Testing Smallest Testable part of application

– Functions, methods, etc
– Sometimes the entire public interface to a class
– Extend compiler's error checking capability.

● Traditionally each unit test should be done in isolation

– Even if your class relies on a database, mock database and test class
– Recently lots of conference talks pushing back against mocks, tests on 

each unit will include its dependencies
● We'll see if this takes 
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Unit/Automated Tests

● There are libraries/packages to support automated tests in nearly 
every important language

● Java : JUnit (the granddaddy of all)/Mockito/cucumber
● Python : pytest (and older unittest and nose)
● C++ : Catch 2, google-test, unittest++
● C# : Mstest
● Newer language like Go and Rust:

– Tools are built in to the language tooling, no library or framerwork required
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Pytest: the current preferred python test framework

● pip install pytest
– I suggest through pycharm unless you have a linux distro with a 

package manager.
– <file><settings> menu (or <pycharm><preferences> or Mac)
– Then choose the project item from the left list

● And the project interpreter
● Then push the '+' icon to add a package
● From there select pytest and install it. 
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Best Practices

● For best practices,

● Have a separate test directory
● Create a new directory as a subdirectory in your project

● Lets call it tests.



  18

What sorts of tests

● What sorts of tests should we write?

– Many people suggest at least as much test code as production code
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What sort of Tests

● What sorts of tests should we write?

– Remember that many people suggest at least as much test code as production 
code

– Want ‘happy path’ tests
● When all data is as expected

– Want bad data tests
● When we enter junk
● c.f little bobby tables

– Especially want to check unusual values
● Like the (in)famous $0 billing statements

– Eventually want to try restricting resources
● Simulate network outage for example. 

https://xkcd.com/327/
https://www.snopes.com/fact-check/zero-dollars-and-zero-sense/


  20

● The first/easiest automated tests 

– Test a single function that computes a value
– Usual starting demo online
– Lets take a look at the TestingDemo project that I have on github

● https://github.com/jsantore/TestingDemo

– Let's write a couple of automated tests for the simpler functions
– that automated test should find ‘error’
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Another Test

● So the first happy path tries some easy wins

– 3,4,5 triangle
– Then we add in floating point answers
– But floating point has precision and rounding issues for repeating decimals 

and irrational decimals
● you’ve heard this since CS1
● Now we run into it with these tests

– For floating point numbers in pytest use 
● Pytest.approx(<expected number>, <acceptable tolerance>)
● Eg
● assert pretendProductionCode.simple_distance(0, 0, 6, 5) == 

pytest.approx(7.81024967590, .000001)
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JUnit Equivelent of Pytest Approx

● JUnit provides an equivalent 

– public static void assertEquals(double expected,
–                                 double actual,
–                                 double delta)
– Version without delta is deprecated 

● Example:

– double myPi = 22.0d / 7.0d; //Don't use this in real life!
– assertEquals(3.14159, myPi, 0.001);

● From:
https://stackoverflow.com/questions/5939788/junit-assertequalsdouble-expected-d
ouble-actual-double-epsilon

–

https://stackoverflow.com/questions/5939788/junit-assertequalsdouble-expected-double-actual-double-epsilon
https://stackoverflow.com/questions/5939788/junit-assertequalsdouble-expected-double-actual-double-epsilon
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The save function

● Let's try to test the output function
– Let's look at the two options
– And then test the one that can be tested.
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Testing on github

● Lets use secrets on github

– We will use the github secrets mechanism to create a file in the 
ephemeral docker container during testing that will disappear after the 
github actions are done 

● The container along with everything ever on it is gone

– "To create secrets for a user account repository, you must be the 
repository owner. To create secrets for an organization repository, you 
must have admin access."

–
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Adding a Secret to github

● To add a secret to github
– On GitHub.com, navigate to the main page of the repository.
– Under your repository name, click Settings. 
– In the left hand side menu in the security section  open the secrets and 

variables menu
● Then pick actions

– The secrets tab is active by default, in the upper right is a green button 
called "new repository secret" push it

– Name your secret (name requirements next slide)
–  Put your secret (no quotes!) in the secret text box
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Github's rules for naming secrets

● Secret name rules
– Names can only contain alphanumeric characters ([a-z], [A-Z], [0-9]) or 

underscores (_). Spaces are not allowed.
– Names must not start with the GITHUB_ prefix.
– Names must not start with a number.
– Names are not case-sensitive.
– Names must be unique at the level they are created at.
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Building the secrets file 

● My file called api_secrets.py is in my gitignore, so I want to rebuild it in 
the ephemeral docker container in github actions

● I called my secret LLM_API_KEY, and in my github actions I put the 
following between  Install dependencies and linting

● My api_secrets.py needs a line like
– gemini_api_key='<my key here>'

- name: Build Secrets
  env:
    API_KEY: ${{ secrets.LLM_API_KEY }}
  run: |
    echo 'gemini_api_key = "'$API_KEY'"' >> api_secrets.py
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In context

● Here I did this for my version of the project
● https://github.com/jsantore/Project1ProfDemoPython2025/blo

b/master/.github/workflows/python-app.yml
● You would have to echo slightly different (more complex) 

things into the file for go (several lines more complex for java) 
but it works the same way.
– For those if you with multi line secrets/env files, you would need 

multiple echo lines
– For more information
– https://unix.stackexchange.com/questions/77277/how-to-append-m

ultiple-lines-to-a-file

●

https://github.com/jsantore/Project1ProfDemoPython2025/blob/master/.github/workflows/python-app.yml
https://github.com/jsantore/Project1ProfDemoPython2025/blob/master/.github/workflows/python-app.yml
https://unix.stackexchange.com/questions/77277/how-to-append-multiple-lines-to-a-file
https://unix.stackexchange.com/questions/77277/how-to-append-multiple-lines-to-a-file
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Now run the tests

● Now that everything is set up, I like to run the tests by replacing the 
simple 
– pytest

● Line that is in the default github actions test runner with 
– python -m pytest tests/*

● Which will run all tests in all python files in the tests subfolder
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Back to better tests

● Now that we have everything we need for sprint2
– Lets add a little more to our ability to build tests 
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Accepting Exceptions

● Sometimes you want your 
code to throw an exception

– Want you automated tests to 
expect those

– Lets look at code in class 

–

– In test:
● with 
pytest.raises(TypeError):
    
pretendProductionCode.add
_interest("4", .05)

–
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Test Coverage

● Want to have your production functions do proper 
error checking and sanity checking
– Want your tests to cover a full suite of 
possibilities

● Should add checks for 0 and 1 at least to the test 
suite.
– Edge cases
– Maybe a really big number too

● At least for java and go and other fixed width 
number language

● Python's Bignum class is a little different



  33

JUnit version of expecting exception 

● In java/junit

● Use ‘decorators’  

– @Test(expected = IndexOutOfBoundsException.class) 
– public void empty() { 
–      new ArrayList<Object>().get(0); 
– }
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Testing and Design

● Variety of philosophies about production code and testing

– Oldie and still used – but less and less commonly:
● Production code is what produces value for the company so it is the focus

– TDD/BDD influenced
● Build production code to be easier to test

– More and more we see:
● Need enough tests to be reasonably sure that new commits didn't break 

anything from before. 
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Build code to be easy to test

● Recommendation: build code to be easy to test
– Generally it is better code 
– Clean code/Lack of code smells etc.

● If you write the entire project in the main function
– It might work
– But it is hard to maintain and extend
– And impossible to test.
– Story of a former student and my colleague's semester-long quest to 

break bad habits.
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A hard to test function

● Some functions are 
hard to test:

● How can we test this 
function?

● def show_output():
    #this is hard to test
    initial_bal = 300 
    balance = add_interest(1000, 0.025)
    print(f"Your new balance is $
{balance}")
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Hard to test

● How can we test show_output From the last slide?

– We could do some crazy shell programming
– Or Monkey-patch print and then put it back
– Or we could write a testable function in the first place.
– Suggestions?
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Easier To Test

● We can make the printing easier to test by taking another parameter.
● def testable_show_output(initial_bal, rate, outfile):

    balance = add_interest(initial_bal, rate)
    if not outfile:
        outfile = sys.stdout
    print(f"Your new balance is ${balance}", file=outfile)

● So now when called from your production code, print prints to the 
screen as normal,

– But we can write tests to have it print to a file
● With Java you can take a param of type PrintStream

– Production code uses System.out (which is just a prebuilt PrintStream)
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