
Automated Testing, Test Driven
Development

 2

Assignment

●

● For next week Listen to
● Fallthrough epidode one-ish

– https://podtail.com/podcast/fallthrough/war-stories/

● Project1
– Any questions on the current sprint?

https://podtail.com/podcast/fallthrough/war-stories/

 3

Automated Testing

● Test Driven Development vs Automated Testing
– Let's have a lucky volunteer or few help explain the difference between

these two?

 4

Test Driven Development

● Today Test Driven Development means at least you write the tests
before the production code that they test
– Failing tests before code
– Then write code
– When tests pass then your software is done.
–

 5

And the Original TDD

● The Original TDD
– And the purist version even today

● Write one test, let it fail, then write the production code to make it pass
● The write one more test, and then make it pass, repeat

– Want to write a webapp?
● Before you do anything – including installing the web app libraries

– Write a test.
– When it fails do something.

– So purist: write test, and only write real code when test fails.

● What seems like it might go wrong here?

 6

TDD The Original Way

 7

Automated Tests

● Pretty much every serious software project uses Automated Tests
today
– Code that evaluates the "production code" and run automatically by the CI

system
● And should be run the the programmer on their local machine first.

– May or may not exercise the entire code base, but does test/exercise at
least part of it.

● Not everyone believes in TDD
– But yes to automated tests.

 8

Kinds of Tests

● There are several ways to classify tests
● One Categorization that is used fairly commonly

– Unit tests
– Functional tests
– Acceptance tests
– What are each of these? What do they do?

 9

Types of Tests

● Unit tests
– Item by item – function by function tests

● Functional tests
– Does the app do what it is supposed to do?

● Acceptance tests
– Does the app do what the client thinks it is supposed to do?

 10

Why?

● So what are the tests supposed to do for us in Test Driven
Development or other methods of using automated tests?

– Why has Testing (TDD?) become so accepted in the last 10-15 years?
● Going from something more avant-garde that many managers resisted to

"table stakes" at most software development places?

– Well actually some people still call it TDD but ‘automated tests’ might
be a better term

– What does Automated testing buy us? (especially with CI)

 11

Why?
● So what are the tests supposed to do for us in Test Driven Development

or other methods of using automated tests?
– Why has Testing (TDD?) become so accepted in the last 10-15 years?

● Going from something more avant-garde that many managers resisted to "table
stakes" at most software development places?

– Well actually some people still call it TDD but ‘automated tests’ might be a
better term

– What does Automated testing buy us? (especially with CI)
– Tests are run every time code is compiled/interpreted.
– Tests become an extension of the compilers ability to catch errors.
– Always better to let the compiler catch the error.
– Why?

– What does it buy us?

 12

TDD vs Automated Tests

● Very few people do old-school TDD today
● But the automated tests technique are still valuable
● Automated tests of some sort are more or less mandatory today.
● Turn your specs into tests

– Unit tests
– And functional tests
– Write them,
– Then write the code (or the other way around)
– Then run the tests
– Every time you change anything and build

● Run all tests again

 13

Assignment

● For those of you new to automated testing
– Read a couple of introductions

● https://katalon.com/resources-center/blog/what-is-automation-testing
● https://medium.com/tenable-techblog/automation-testing-with-pytest-444c8b34ead2

– And a quick look at doing some of this in pytest (we'll look at some examples
later)

● https://bas.codes/posts/python-pytest-introduction
●

– For those of you who have done automation tests before let's move on

https://katalon.com/resources-center/blog/what-is-automation-testing
https://medium.com/tenable-techblog/automation-testing-with-pytest-444c8b34ead2
https://bas.codes/posts/python-pytest-introduction

 14

Unit Tests

● First an easiest tests to understand/automate are Unit Tests

● Testing Smallest Testable part of application

– Functions, methods, etc
– Sometimes the entire public interface to a class
– Extend compiler's error checking capability.

● Traditionally each unit test should be done in isolation

– Even if your class relies on a database, mock database and test class
– Recently lots of conference talks pushing back against mocks, tests on

each unit will include its dependencies
● We'll see if this takes

 15

Unit/Automated Tests

● There are libraries/packages to support automated tests in nearly
every important language

● Java : JUnit (the granddaddy of all)/Mockito/cucumber
● Python : pytest (and older unittest and nose)
● C++ : Catch 2, google-test, unittest++
● C# : Mstest
● Newer language like Go and Rust:

– Tools are built in to the language tooling, no library or framerwork required

 16

Pytest: the current preferred python test framework

● pip install pytest
– I suggest through pycharm unless you have a linux distro with a

package manager.
– <file><settings> menu (or <pycharm><preferences> or Mac)
– Then choose the project item from the left list

● And the project interpreter
● Then push the '+' icon to add a package
● From there select pytest and install it.

 17

Best Practices

● For best practices,

● Have a separate test directory
● Create a new directory as a subdirectory in your project

● Lets call it tests.

 18

What sorts of tests

● What sorts of tests should we write?

– Many people suggest at least as much test code as production code

 19

What sort of Tests

● What sorts of tests should we write?

– Remember that many people suggest at least as much test code as production
code

– Want ‘happy path’ tests
● When all data is as expected

– Want bad data tests
● When we enter junk
● c.f little bobby tables

– Especially want to check unusual values
● Like the (in)famous $0 billing statements

– Eventually want to try restricting resources
● Simulate network outage for example.

https://xkcd.com/327/
https://www.snopes.com/fact-check/zero-dollars-and-zero-sense/

 20

● The first/easiest automated tests

– Test a single function that computes a value
– Usual starting demo online
– Lets take a look at the TestingDemo project that I have on github

● https://github.com/jsantore/TestingDemo

– Let's write a couple of automated tests for the simpler functions
– that automated test should find ‘error’

 21

Another Test

● So the first happy path tries some easy wins

– 3,4,5 triangle
– Then we add in floating point answers
– But floating point has precision and rounding issues for repeating decimals

and irrational decimals
● you’ve heard this since CS1
● Now we run into it with these tests

– For floating point numbers in pytest use
● Pytest.approx(<expected number>, <acceptable tolerance>)
● Eg
● assert pretendProductionCode.simple_distance(0, 0, 6, 5) ==

pytest.approx(7.81024967590, .000001)

 22

JUnit Equivelent of Pytest Approx

● JUnit provides an equivalent

– public static void assertEquals(double expected,
– double actual,
– double delta)
– Version without delta is deprecated

● Example:

– double myPi = 22.0d / 7.0d; //Don't use this in real life!
– assertEquals(3.14159, myPi, 0.001);

● From:
https://stackoverflow.com/questions/5939788/junit-assertequalsdouble-expected-d
ouble-actual-double-epsilon

–

https://stackoverflow.com/questions/5939788/junit-assertequalsdouble-expected-double-actual-double-epsilon
https://stackoverflow.com/questions/5939788/junit-assertequalsdouble-expected-double-actual-double-epsilon

 23

The save function

● Let's try to test the output function
– Let's look at the two options
– And then test the one that can be tested.

 24

Testing on github

● Lets use secrets on github

– We will use the github secrets mechanism to create a file in the
ephemeral docker container during testing that will disappear after the
github actions are done

● The container along with everything ever on it is gone

– "To create secrets for a user account repository, you must be the
repository owner. To create secrets for an organization repository, you
must have admin access."

–

 25

Adding a Secret to github

● To add a secret to github
– On GitHub.com, navigate to the main page of the repository.
– Under your repository name, click Settings.
– In the left hand side menu in the security section open the secrets and

variables menu
● Then pick actions

– The secrets tab is active by default, in the upper right is a green button
called "new repository secret" push it

– Name your secret (name requirements next slide)
– Put your secret (no quotes!) in the secret text box

 26

Github's rules for naming secrets

● Secret name rules
– Names can only contain alphanumeric characters ([a-z], [A-Z], [0-9]) or

underscores (_). Spaces are not allowed.
– Names must not start with the GITHUB_ prefix.
– Names must not start with a number.
– Names are not case-sensitive.
– Names must be unique at the level they are created at.

 27

Building the secrets file

● My file called api_secrets.py is in my gitignore, so I want to rebuild it in
the ephemeral docker container in github actions

● I called my secret LLM_API_KEY, and in my github actions I put the
following between Install dependencies and linting

● My api_secrets.py needs a line like
– gemini_api_key='<my key here>'

- name: Build Secrets
 env:
 API_KEY: ${{ secrets.LLM_API_KEY }}
 run: |
 echo 'gemini_api_key = "'$API_KEY'"' >> api_secrets.py

 28

In context

● Here I did this for my version of the project
● https://github.com/jsantore/Project1ProfDemoPython2025/blo

b/master/.github/workflows/python-app.yml
● You would have to echo slightly different (more complex)

things into the file for go (several lines more complex for java)
but it works the same way.
– For those if you with multi line secrets/env files, you would need

multiple echo lines
– For more information
– https://unix.stackexchange.com/questions/77277/how-to-append-m

ultiple-lines-to-a-file

●

https://github.com/jsantore/Project1ProfDemoPython2025/blob/master/.github/workflows/python-app.yml
https://github.com/jsantore/Project1ProfDemoPython2025/blob/master/.github/workflows/python-app.yml
https://unix.stackexchange.com/questions/77277/how-to-append-multiple-lines-to-a-file
https://unix.stackexchange.com/questions/77277/how-to-append-multiple-lines-to-a-file

 29

Now run the tests

● Now that everything is set up, I like to run the tests by replacing the
simple
– pytest

● Line that is in the default github actions test runner with
– python -m pytest tests/*

● Which will run all tests in all python files in the tests subfolder

 30

Back to better tests

● Now that we have everything we need for sprint2
– Lets add a little more to our ability to build tests

 31

Accepting Exceptions

● Sometimes you want your
code to throw an exception

– Want you automated tests to
expect those

– Lets look at code in class

–

– In test:
● with
pytest.raises(TypeError):

pretendProductionCode.add
_interest("4", .05)

–

 32

Test Coverage

● Want to have your production functions do proper
error checking and sanity checking
– Want your tests to cover a full suite of
possibilities

● Should add checks for 0 and 1 at least to the test
suite.
– Edge cases
– Maybe a really big number too

● At least for java and go and other fixed width
number language

● Python's Bignum class is a little different

 33

JUnit version of expecting exception

● In java/junit

● Use ‘decorators’

– @Test(expected = IndexOutOfBoundsException.class)
– public void empty() {
– new ArrayList<Object>().get(0);
– }

 34

Testing and Design

● Variety of philosophies about production code and testing

– Oldie and still used – but less and less commonly:
● Production code is what produces value for the company so it is the focus

– TDD/BDD influenced
● Build production code to be easier to test

– More and more we see:
● Need enough tests to be reasonably sure that new commits didn't break

anything from before.

 35

Build code to be easy to test

● Recommendation: build code to be easy to test
– Generally it is better code
– Clean code/Lack of code smells etc.

● If you write the entire project in the main function
– It might work
– But it is hard to maintain and extend
– And impossible to test.
– Story of a former student and my colleague's semester-long quest to

break bad habits.

 36

A hard to test function

● Some functions are
hard to test:

● How can we test this
function?

● def show_output():
 #this is hard to test
 initial_bal = 300
 balance = add_interest(1000, 0.025)
 print(f"Your new balance is $
{balance}")

 37

Hard to test

● How can we test show_output From the last slide?

– We could do some crazy shell programming
– Or Monkey-patch print and then put it back
– Or we could write a testable function in the first place.
– Suggestions?

 38

Easier To Test

● We can make the printing easier to test by taking another parameter.
● def testable_show_output(initial_bal, rate, outfile):

 balance = add_interest(initial_bal, rate)
 if not outfile:
 outfile = sys.stdout
 print(f"Your new balance is ${balance}", file=outfile)

● So now when called from your production code, print prints to the
screen as normal,

– But we can write tests to have it print to a file
● With Java you can take a param of type PrintStream

– Production code uses System.out (which is just a prebuilt PrintStream)

 39

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

