

Intro to BDD

Admin

● Ok – so
– Quiz (exam in 2 weeks – not the whole class)

– Presentations

– Then lets get back into it.

– Not going to get completely back on track till
next week.

What is BDD

● BDD (Behavior Driven Development) began
as a better TDD (Test Driven Development)

– TDD had a tendency to focus on the small unit
tests

– Losing the forest for the trees.

– BDD initially to fix that.

The old way of developing Software

BDD in a picture

BDD trying to avoid
● BDD Book:

– Two primary reasons for software failure rates
● “Not building the software right”
● “not building the right software”

– BDD an attempt to fix both of those.

– Examples:
● Healthcare.gov circa 2013

– Postmortum not yet public
● Queensland health department payroll software.

– Delivered 2010 barely functional (required 2008)
– Postmotem: $400+ million to make, $800+ million to fix

Example TDD tests

● Here is a proposed TDD test
– “public class BankAccountTest {

– @Test

– public void testTransfer() {...}

–

– @Test

– public void testDeposit() {...}

– }”

–

● Excerpt From: John Ferguson Smart. “BDD in Action: Behavior-Driven
Development for the whole software lifecycle.” iBooks.

Example BDD test
● So what would a BDD equivalent look like?

– “public class WhenTransferringInternationalFunds {

– @Test

– public void should_transfer_funds_to_a_local_account() {...}

– @Test

– public void should_transfer_funds_to_a_different_bank() {...}

– ...

– @Test

– public void should_deduct_fees_as_a_separate_transaction()
{...}

– ...

– }”
– Excerpt From: John Ferguson Smart. “BDD in Action: Behavior-Driven Development for the whole

software lifecycle.” iBooks.

BDD's Cousins

● Several methodologies developed similarly
and at nearly the same time as BDD

– Specification by Example

– Acceptance-Test-Driven Development (ATDD)

– Acceptance-Test-Driven Planning

–

–

BDD guiding principles
● Some rules of thumb

– Focus on features customers need
● Not one that might be neat soon.

– Customers and devs work together to figure out
which those features are

– Embrace uncertainty
● Waterfall is dead – you won't know everything before

you start

– Use real concrete examples to show features

– “Don't write automated tests, write executable
specifications”

Gherkin
● Gherkin:

– a structured Natural Language format for
specifying/testing a feature

– Given..When..Then

– Can use and/or to string together conditions

– These structured text files are then read in by
bdd frameworks

– Available for nearly every language that
matters

● Java: jbehave
● Python behave
● Various others: cucumber

Gherkin example
Feature: Fight or flight (from python behave framework tutorial)

– In order to increase the ninja survival rate,

– As a ninja commander

– I want my ninjas to decide whether to take on an

– opponent based on their skill levels

–

– Scenario: Weaker opponent

– Given the ninja has a third level black-belt

– When attacked by a samurai

– Then the ninja should engage the opponent

–

– Scenario: Stronger opponent

– Given the ninja has a third level black-belt

– When attacked by Chuck Norris

– Then the ninja should run for his life

Living Documentation

● How is your software documented?

Living Documentation

● How is your software documented?
– I know a fellow at IBM whose job it is to go

work with their developers and write
technical documentation

● Existing projects
● New projects?

– What if there was a better way?

Living Documentation

● Living Documentation
– Developed from automated acceptance criteria

– Full circle, from code back to formalized
natural language

– Advantages?

Living Documentation

● Living Documentation
– Developed from automated acceptance criteria

– Full circle, from code back to formalized
natural language

– Advantages?
● Docs are never out of date
● Others?

Docs and Maintenance

● Software maintenance
– 40-80% of software cost

– Sometimes two groups of devs
● Initial devs
● Maintenance team

– Has to learn the software from scratch.

BDD
● Advantages:

– Reducing wasted effort/reduced cost
● You don't spend lots of time building software no one

wants

– Easier changes
● Change specs-> change tests

– Faster releases
● Easier changes lead to faster, safer releases

BDD

● Hurdles
– The customer/business reps have to be

involved all the time

– Really need some sort of agile development
process

– No silo-ing the devs away

– Tests need to be well written or it all falls apart

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

