

Software Dev

Clean Object oriented programming

Admin

● Midterm

Caveat

● Everything said in this lecture is true
– Or so I'm claiming

– But some languages (python) don't give you
the tools to do it right.

– Principles still hold

Abstraction

● The whole point of Object Oriented
Programming/Design:

– Abstraction through encapsulation

– Encapsulation: hiding object state through private
instance variables

– Abstraction: hiding the details from users – it just
works

– Example from 94 in clean code
● Note the jab at java.

What does that gain us?

● What does the abstraction of a point buy us?

What does that gain us?

● What does the abstraction of a point buy us?
– Now we can use whatever point representation

is efficient/convenient without the client code
needing to know

– We can change the implementation without
anyone knowing/caring

Accessors and Mutators

● We use accessors and mutators all the time
– Why?

Accessors and Mutators
● We use accessors and mutators all the time

– And why are we letting clients access our
private data?

– Accessors maybe

– Mutators?!?!?!

– Why do we use accessors even? Is there a
better way?

– (I Know some languages love them)

– “Richard” gives us another reason not to
abuse mutators

– http://mcfunley.com/from-the-annals-of-dubio
us-achievement

http://mcfunley.com/from-the-annals-of-dubious-achievement
http://mcfunley.com/from-the-annals-of-dubious-achievement

Data Structures vs Objects
● Book:

– Objects hide their data and expose operations

– Data structures expose their data and have no
operations.

● (think an array or a linked list)

– Now we can try to make object oriented data
structures

● but there is a reason for c++ struct

– How about a Java 'class' that is really a data
structure?

– Python?

Law of Demeter
● Law of Demeter

– Ian Holland 1987 Northeastern Univ

– Don't talk to strangers only talk to friends (in the c++
sense of the word)

– AKA: principle of least knowledge

– Book version:
● A module should not know about the innards of the

objects it uses

–

Law Of Demeter
● Law of Demeter Specifics:

– A class C with a method M, M can only call:
● Methods in class C
● Methods in an object created by M
● Methods from objects passed as parameters to M
● Methods from an instance variable of C
● Do not call methods on objects returned by any of the

above

– Buys us automatically reduced coupling

– By which I mean?

●

Train Wrecks

● Often referred to as optional part or optional
corollary of Law of Demeter: avoid train wrecks

● Any one know what train wrecks are?

Train Wrecks

● Often referred to as optional part or optional
corollary of Law of Demeter: avoid train wrecks

● Any one know what train wrecks are?
● this.configuration.getLocation().toString().toUpperC

ase().equals(otherString)
● Wow!1?

– Perfectly syntactically correct

– I’ve done a lesser version myself.

● Law of Demeter violation?

Train Wrecks

● Often referred to as optional part or optional
corollary of Law of Demeter: avoid train wrecks

● Any one know what train wrecks are?
● this.configuration.getLocation().toString().toUpperC

ase().equals(otherString)
● Wow!1?

– Perfectly syntactically correct

– I’ve done a lesser version myself.

● Law of Demeter violation?
– No – but how long did it take you to tell?

Train Wrecks
● Main problem with train wrecks is that it is hard to

tell if there is a law of Demeter violation.
● How about this:

– self.priceLabel.text = self.media.ad.price.value;

– Is this a Law of Demeter violation?

Train Wrecks
● Main problem with train wrecks is that it is hard to

tell if there is a law of Demeter violation.
● How about this:

– self.priceLabel.text = self.media.ad.price.value;

– Is this a Law of Demeter violation?

– No – if you can access the data members directly it
is a data structure – not a class

– So no Law of Demeter Violation.

– Difficulty in languages like java and frameworks like
java beans that demand all data structures use
private instance variables and accessors.

Data Transfer Objects

● Data Transfer Objects (DTO)
– Pure data structures

– Public instance variables, no methods

– structs from C++

– Named tuples from python

●

Next Step
● The Java Bean:

– 'quasi-encapsulation'

– Private instance variables

– Accessors and mutators for all

– Robert Martin (Uncle Bob) refers to this as:

– “to make some OO purists feel better but usually
provides no other benefit”

– Were everywhere 5-10 years ago (in heyday of java)
● Seem to be less widely used these days
● Lots of legacy code to support.

Active Records
● Refers to a 'special type of DTO
● DTO with 'navigation methods' like save and find
● Designed by Martin Fowler
● Don't add other methods

– Like business rules.

● These days almost synonymous with ruby on rails
– Which wasn’t a thing when Clean Code was written.

Assignment

● Read Robert Martin chapter 6

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

