

Software Engineering

Functions

Admin

● Project?

– how’s it going? Any Questions?

Admin

● Midterm discussion
– Quizzes coming

● Wednesday classes don’t meet on Feb 21
– Monday classes will meet instead.

– Actually not many classes before midterm.

Function/Method Length

● Many have heard me opine on this before
– How long should a function/method be?

Function/Method Length

● Many have heard me opine on this before
– How long should a function/method be?

– My rule of thumb was half a screen full
● Of course that was with a reasonable font
● 20-30 lines at most

– Someone reading your method/function should be
able to easily tell what your method is doing

● Remember Miller's magic number 7.

● Your book goes further
– Functions should be <20 lines with no more than 2

levels of indent.

Function Length
● Of course lines need to be reasonable too
● Bad single line:

– return level4 != null ? GetResources().Where(r => (r.Level2
== (int)level2) && (r.Level3 == (int)level3) && (r.Level4 ==
(int)level4)).ToList() : level3 != null ?
GetResources().Where(r => (r.Level2 == (int)level2) &&
(r.Level3 == (int)level3)).ToList() : level2 != null ?
GetResources().Where(r => (r.Level2 ==
(int)level2)).ToList() : GetAllResourceList();

● Thanks to stackoverflow user 26507 for this example

Functions

● A function or a method
– Should do how many things?

Functions

● A function or a method
– Should do how many things?

– One of course
● Do they?

How about this method?
● void printOwing() {

● Enumeration e = _orders.elements();

● double outstanding = 0.0;

● // print banner

● System.out.println ("**************************");

● System.out.println ("***** Customer Owes ******");

● System.out.println ("**************************");

● // calculate outstanding

● while (e.hasMoreElements()) {

● Order each = (Order) e.nextElement();

● outstanding += each.getAmount(); }

● //print details

● System.out.println ("name:" + _name);

● System.out.println ("amount" + outstanding); } cite: sourcemaking.com

Ordering methods in a class
● How should you order functions/methods in a

class/module?

Ordering methods in a class
● How should you order functions/methods in a

class/module?
● In the old days

– Alphabetically was popular

– You would be able to find the method you were
looking for

– Today not needed

Ordering methods in a class
● How should you order functions/methods in a

class/module?
– Book suggests top down

– High levels of abstraction at top of file/class

– Then next level of abstraction

– Till finally the functions that deal with the nitty
gritty are at the bottom.

Arguments/parameters

● What have you heard about parameters?
– How many should you have?

Arguments/parameters
● What have you heard about parameters?

– How many should you have?

– As few as possible

● Parameters should be input only
– With OOP this is normal anyway

– Working with older code is where you are likely to
have issues

● Flag arguments
– Maybe you should have two methods?

Arguments/Parameters

● When more than one param
– Make it clear from method name which param

does what

– Consider creating an object for wrapping multiple
related data items

● Though modern ides make this easier.

Side Effects
● What do we mean by side effects in a

method/function?

Side Effects
● What do we mean by side effects in a

method/function?
– Old style definition: anything that isn't a result

calculated by a function
● Pop up a window.

– More current:
● Anything that isn't clear from method definition that

method is doing.
● Lets look at listing 3-6 on page 44 of book.

Exceptions

● An OOP standard:
– Prefer exceptions to error codes

– Using C? Too bad

– Using a language from the last 30 years?
● Use exceptions and not error codes.

● Also consider:
– Each method should do one thing:

● Error handling is one thing. One method for error
handling, the other for doing something that might
cause an error.

Factory pattern

● Do on board with employee and subclasses
– Salaried

– Commissioned

– Hourly

– Factory interface and class

UML for factory pattern

The code and UML examples come from
https://www.tutorialspoint.com/design_pattern/factory_pattern.htm

https://www.tutorialspoint.com/design_pattern/factory_pattern.htm

The code (in java) – part 1
● public interface Shape {

● void draw();

● }

● public class Rectangle implements Shape {

● @Override

● public void draw() {

● System.out.println("Inside Rectangle::draw() method.");

● }}

● public class Square implements Shape {

● @Override

● public void draw() {

● System.out.println("Inside Square::draw() method.");

● }}

The code (in java) – part 1

● public class Circle implements Shape {
● @Override
● public void draw() {
● System.out.println("Inside Circle::draw()

method.");
● }
● }

● public class ShapeFactory {

● //use getShape method to get object of type shape

● //sometimes this is a static method

● public Shape getShape(String shapeType){

● if(shapeType == null){

● return null;}
if(shapeType.equalsIgnoreCase("CIRCLE")){

● return new Circle();

● } else if(shapeType.equalsIgnoreCase("RECTANGLE")){

● return new Rectangle();

● } else if(shapeType.equalsIgnoreCase("SQUARE")){

● return new Square();

● }

● return null;

● }}

● public class FactoryPatternDemo {

● public static void main(String[] args) {

● ShapeFactory shapeFactory = new ShapeFactory();

● //get an object of Circle and call its draw method.

● Shape shape1 = shapeFactory.getShape("CIRCLE");

● //call draw method of Circle

● shape1.draw();

● //get an object of Rectangle and call its draw method.

● Shape shape2 = shapeFactory.getShape("RECTANGLE");

● //call draw method of Rectangle

● shape2.draw();

● //get an object of Square and call its draw method.

● Shape shape3 = shapeFactory.getShape("SQUARE");

● //call draw method of circle

● shape3.draw();

● }}

Reading

● Read chapter 3 in clean code

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

