
  

Software Engineering

Functions



  

Admin

● Project?

– how’s it going? Any Questions?



  

Admin

● Midterm discussion
– Quizzes coming

● Wednesday classes don’t meet on Feb 21 
– Monday classes will meet instead.

– Actually not many classes before midterm.



  

Function/Method Length

● Many have heard me opine on this before
– How long should a function/method be?



  

Function/Method Length

● Many have heard me opine on this before
– How long should a function/method be?

– My rule of thumb was half a screen full
● Of course that was with a reasonable font
● 20-30 lines at most

– Someone reading your method/function should be 
able to easily tell what your method is doing

● Remember Miller's magic number 7.

● Your book goes further
– Functions should be <20 lines with no more than 2 

levels of indent.



  

Function Length
● Of course lines need to be reasonable too
● Bad single line:

– return level4 != null ? GetResources().Where(r => (r.Level2 
== (int)level2) && (r.Level3 == (int)level3) && (r.Level4 == 
(int)level4)).ToList() : level3 != null ? 
GetResources().Where(r => (r.Level2 == (int)level2) && 
(r.Level3 == (int)level3)).ToList() : level2 != null ? 
GetResources().Where(r => (r.Level2 == 
(int)level2)).ToList() : GetAllResourceList();

● Thanks to stackoverflow user 26507 for this example 



  

Functions

● A function or a method 
– Should do how many things?



  

Functions

● A function or a method 
– Should do how many things?

– One of course
● Do they?



  

How about this method?
● void printOwing() {

●     Enumeration e = _orders.elements();

●     double outstanding = 0.0;

●     // print banner

●     System.out.println ("**************************");

●     System.out.println ("***** Customer Owes ******");

●     System.out.println ("**************************");

●     // calculate outstanding

●     while (e.hasMoreElements()) {

●         Order each = (Order) e.nextElement();

●         outstanding += each.getAmount();        } 

●     //print details

●     System.out.println ("name:" + _name);

●     System.out.println ("amount" + outstanding);       }  cite: sourcemaking.com



  

Ordering methods in a class
● How should you order functions/methods in a 

class/module?



  

Ordering methods in a class
● How should you order functions/methods in a 

class/module?
● In the old days 

– Alphabetically was popular

– You would be able to find the method you were 
looking for

– Today not needed



  

Ordering methods in a class
● How should you order functions/methods in a 

class/module?
– Book suggests top down

– High levels of abstraction at top of file/class

– Then next level of abstraction

– Till finally the functions that deal with the nitty 
gritty are at the bottom.



  

Arguments/parameters

● What have you heard about parameters?
– How many should you have?



  

Arguments/parameters
● What have you heard about parameters?

– How many should you have?

– As few as possible

● Parameters should be input only
– With OOP this is normal anyway

– Working with older code is where you are likely to 
have issues 

● Flag arguments
– Maybe you should have two methods?



  

Arguments/Parameters

● When more than one param
– Make it clear from method name which param 

does what

– Consider creating an object for wrapping multiple 
related data items

● Though modern ides make this easier.



  

Side Effects
● What do we mean by side effects in a 

method/function?



  

Side Effects
● What do we mean by side effects in a 

method/function?
– Old style definition: anything that isn't a result 

calculated by a function
● Pop up a window.

– More current:
● Anything that isn't clear from method definition that 

method is doing.
● Lets look at listing 3-6 on page 44 of book.



  

Exceptions

● An OOP standard:
– Prefer exceptions to error codes

– Using C? Too bad

– Using a language from the last 30 years?
● Use exceptions and not error codes.

● Also consider: 
– Each method should do one thing:

● Error handling is one thing. One method for error 
handling, the other for doing something that might 
cause an error.



  

Factory pattern

● Do on board with employee and subclasses
– Salaried

– Commissioned

– Hourly

– Factory interface and class



  

UML for factory pattern

The code and UML examples come from 
https://www.tutorialspoint.com/design_pattern/factory_pattern.htm
 

https://www.tutorialspoint.com/design_pattern/factory_pattern.htm


  

The code (in java) – part 1
● public interface Shape {

●    void draw();

● }

● public class Rectangle implements Shape {

●    @Override

●    public void draw() {

●       System.out.println("Inside Rectangle::draw() method.");

●    }}

● public class Square implements Shape {

●    @Override

●    public void draw() {

●       System.out.println("Inside Square::draw() method.");

●    }}



  

The code (in java) – part 1

● public class Circle implements Shape {
●    @Override
●    public void draw() {
●       System.out.println("Inside Circle::draw() 

method.");
●    }
● }



  

● public class ShapeFactory {

●    //use getShape method to get object of type shape

● //sometimes this is a static method 

●    public Shape getShape(String shapeType){

●       if(shapeType == null){

●          return null;}       
if(shapeType.equalsIgnoreCase("CIRCLE")){

●          return new Circle();        

●       } else if(shapeType.equalsIgnoreCase("RECTANGLE")){

●          return new Rectangle();        

●       } else if(shapeType.equalsIgnoreCase("SQUARE")){

●          return new Square();

●       }

●       return null;

●    }}



  

● public class FactoryPatternDemo {

●    public static void main(String[] args) {

●       ShapeFactory shapeFactory = new ShapeFactory();

●       //get an object of Circle and call its draw method.

●       Shape shape1 = shapeFactory.getShape("CIRCLE");

●       //call draw method of Circle

●       shape1.draw();

●       //get an object of Rectangle and call its draw method.

●       Shape shape2 = shapeFactory.getShape("RECTANGLE");

●       //call draw method of Rectangle

●       shape2.draw();

●       //get an object of Square and call its draw method.

●       Shape shape3 = shapeFactory.getShape("SQUARE");

●       //call draw method of circle

●       shape3.draw();

●    }}



  

Reading

● Read chapter 3 in clean code
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