

A bit more on Testing

Admin

Some thoughts on the project

● You are reading data from the web.
– If you know knowing about http 1.x read at

least about get and put

– Maybe here:
https://code.tutsplus.com/tutorials/a-beginne
rs-guide-to-http-and-rest--net-16340

– HackerNews api returns data in JSON
● JavaScript Object Notation
● No javascript needed

– Lets look at an example of the format
● https://www.digitalocean.com/community/tutorial

s/an-introduction-to-json
●

https://code.tutsplus.com/tutorials/a-beginners-guide-to-http-and-rest--net-16340
https://code.tutsplus.com/tutorials/a-beginners-guide-to-http-and-rest--net-16340
https://www.digitalocean.com/community/tutorials/an-introduction-to-json
https://www.digitalocean.com/community/tutorials/an-introduction-to-json

Some suggestions

● In python
– use the requests package to get the data from

the url

– Then once you tell the result to convery to json
you will have a big list with embedded lists in
it. Dig through the list manually to find its
structure and then extract the bits that you
need programmatically.

In Java

● For getting the data, not as much of a one true
way – maybe HttpURLConnection

● To work with the JSON data many students
have found google’s gson package to be
useful

– https://github.com/google/gson

–

https://github.com/google/gson

Lets look at an unrelated example
● Alpha vantage (https://www.alphavantage.co/)

sells stock info apis
– Make a sample one available to demo

– https://www.alphavantage.co/documentation/

– https://www.alphavantage.co/query?function
=TIME_SERIES_DAILY_ADJUSTED&symbol=MSFT&ap
ikey=demo

– Returns json with historical data

–

https://www.alphavantage.co/
https://www.alphavantage.co/documentation/
https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=MSFT&apikey=demo
https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=MSFT&apikey=demo
https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=MSFT&apikey=demo

Hint: be nice

● Under no circumstances should you ever run
your http request in a loop!!?!?!!

– Sites will think you are attacking them and ban
your IP

– You will be sad

– Bright students have done so in the past.

Lets look at an example in python
● import requests

●

● def demo_json():

● sample_query = 'https://www.alphavantage.co/query?
function=TIME_SERIES_DAILY_ADJUSTED&symbol=MSFT&apikey=de
mo'

● web_response = requests.get(sample_query)

● json_data = web_response.json()

● print(json_data)

●

● Put this python program into your favorite editor and run it. What do you
see? (you can grab it off the class website and paste it in)

● How would we grab data from yesterday?

Look at python dictionaries

● Talk about python dictionaries using the
results from previous page.

User stories
● A short simple description for a feature from the

perspective of a user
– Eg for an sports betting app:

● As a user I want to login so that I can access my
account

● As a user I want to place a bet.
● As a customer service person I want to access an

account so I can resolve a complaint

– General form:
● As a <type of user> I want to <goal> [so that I can

<reason>]

● Usually start our general and then get more
specific as you go.

Use Cases
● Use case

– Describes complete interaction between user and
software

● Or system

– Is about the behavior that will be built to meet
needs

–

User Stories vs Use Cases

● User stories describe a need
● Use cases describe the behavior to meet that

need.
● Perhaps we’ll look at examples later in the

class.

Tests

● When you are building your tests
– Try taking the URL as a parameter

– Then call your function with good and bad –
make sure that your code handles response
codes other than 200

● My 4 line example did not.

– Make sure that you try both good input and get
good results

– And lots of bad input and make sure your
program doesn’t barf.

Automated Tests
● Automated tests should be executable

specifications
– If the user story says that someone should be able

to do X with your code

– Test that your code does X

– And Test that it does not do not X

– And Test that it does not have security errors while
doing X

– And Test that it fails gracefully when the resources
needed for X are missing

Tests

● When you are building your tests
– Try taking the URL as a parameter

– Then call your function with good and bad –
make sure that your code handles response
codes other than 200

● My 4 line example did not.

– Make sure that you try both good input and get
good results

– And lots of bad input and make sure your
program doesn’t barf.

An Example

● I’ll work through a testing example using
pycharm and pytest

– If you are using java probably use junit

– And intellij

– It should work very similarly.

Install

● Make sure that pytest is installed
– Pip3 install pytest

– Or go to your pycharm project interpreter and
add the package.

Tell pycharm about pytest

● In pycharm choose settings
– Then open the tools option and choose python

integrated tools.

– In the default test runner option choose py.test

– Choose ok and close the dialog.

Best Practices

● For best practices,
– Have a separate test directory

– Create a new directory as a subdirectory in
your project

– Lets call it tests.

Lets write a simple test

● In your tests directory in your new test file
– Make sure it begins with test_

– Import your real file

– Import pytest

– Write a function called

– test_your_real_function

– Replace your_real_function with its actual
name of course.

– Use an assert statement in your test function
to test something about your production
function

Write tests to test for errors

● Also write tests that pass bad data
– See if your code handles it gracefully.

Lets see it work

● Demo with two tests
– One that passes

– One that doesn’t

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

