

Clean Systems

Admin

● Next Quiz
● Exam discussion
● Anything else?
● Images from chapter 11 of clean code by Bob

Martin
● Read chapter 11 of clean code for this slide

set.

Build an Aircraft Carrier

● How many nations in the world have at least
one aircraft carrier?

Build an Aircraft Carrier

● How many nations in the world have at least
one aircraft carrier?

– 9 (Brazil, China, France, India, Italy, Russia,
Spain, Thailand, US)

● How many countries have ever completely
built an aircraft carrier from start to finish?

Build an Aircraft Carrier

● How many nations in the world have at least
one aircraft carrier? (accurate as of 2016)

– 9 (Brazil, China, France, India, Italy, Russia,
Spain, Thailand, US)

● How many countries have ever completely
built an aircraft carrier from start to finish?

– France, Italy, Japan, USSR, Great Britain,
United States (Maybe China, built, and in
Sea Trials as of 2018.)

● Why so few?

Why so few?

● Aircraft carriers are a huge undertaking
– Big investment sure

– But major logistical issues too
● Designing a floating nuclear power city
● Dealing with the logistics of manning and

maintaining it
● Facilities for docking
● Fleets of planes

From ships to software
● 1997 USS Yorktown

– Crew member enters 0 in database field

– Divide by zero error crashes all windows
machines on network – dead in water

● 2006 F-22 squadron goes on overseas
deployment for the first time

– Hawaii to Okinawa Japan

– Crosses international dateline

– All computer systems 'dump' (crash)

– No navigation – no nothing.

– Followed the refueling tanker plane to Japan

Software Systems

● Often extremely complex
● Aircraft carrier is apt metaphor
● One person can't do it all
● Not even Notch.

Separation of Concerns

● Separate starting the system from running it.
– Construction is a different use case than use

of a system

– Make the startup routine create what is need
by the app

● That way there is no path the leaves something
uninitialized

●

Separating construction

● Separate construction from use
– Notice that all of the knows-a relationships go

out of the 'main'/setup routine

Factory approach

● This is a perfect situation to use a factory to
reduce coupling:

●

Scaling up

● Ruby on rails in 2008
– For toy sites it was a genre changing moment

– It made full stack development an out of the
box experience

– Then?

Scaling up

● Ruby on rails in 2008
– For toy sites it was a genre changing moment

– It made full stack development an out of the box
experience

– Then?

– It didn't scale – beyond a few thousand connections
an hour the whole thing fell apart.

● Ruby on rails today
– After several years of development works well for

small and medium businesses

– 30k-ish connections an hour

Scaling up

● Software grows
– Build for today

– Build to be easy to maintain/change

– But not for what you think tomorrow will bring.

– In early 2006 no one thought that an
underpowered Nintendo Wii would be the
biggest selling game console of 2007 and
2008

– In 2009 no one would have predicted that MS
windows would be a minority operating
system today.

Crosscutting Concerns

● CrossCutting Concerns
– Semi jargon term for an issue that has to be

addressed across a software system

– Separation of concerns not really possible with
these

– Examples?

Crosscutting Concerns

● CrossCutting Concerns
– Semi jargon term for an issue that has to be

addressed across a software system

– Separation of concerns not really possible with
these

– Common Examples:
● Transaction logic (saving/persistence)
● Security/Authentication
● Logging

– Need these in multiple modules.

Aspect Oriented Programming

● Aspect Oriented Programming
– Designed to allow separation of cross cutting

concerns

– Usually by meta programming
● Decorators
● All methods beginning with loggedXXXX get the

logging functionality automatically.

– Code is valid in original language

– But with new interpreter gains AOP functionality

– And code isn't cluttered with cross cutting concerns
everywhere

Use the right language

● Programming languages
– What does it take for a language to be Turing

complete? (lets consider imperative languages
for now)

–

Use the right language

● Programming languages
– What does it take for a language to be Turing

complete? (lets consider imperative languages
for now)

● Needs conditionals and looping

– Once a language is Turing Complete what does
that mean for us?

Use the right language

● Programming languages
– What does it take for a language to be Turing

complete? (lets consider imperative languages
for now)

● Needs conditionals and looping

– Once a language is Turing Complete what does
that mean for us?

● That we can write any program that we can write in
any language

● But should we!?!?

Use the right Language

● Languages are made to make some problems
easier

– Use a domain specific language

– R for statistical stuff

– Lua for imbedded interpretation

– C/C++ for fast hard-real time programming

– Etc.

–

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

