
VERSION CONTROL
STANDARd pRACTICE

• Introduction to version control
1. Repositories and working copies
2. Distributed and centralized version control
3. Conflicts
4. Merging changes

• Version control best practices
5. Use a descriptive commit message
6. Avoid indiscriminate commits
7. Incorporate others' changes frequently
8. Remember that the tools are line-based
9. Don't commit generated files
10. Netbeans Git practice demo

• Version control enables multiple people to simultaneously
work on a single project

• Version control also enables one person you to use
multiple computers to work on a project, so it is valuable
even if you are working by yourself

• Version control gives access to historical versions of your
project. you can determine when, why, and by whom it
was ever edited.

WHAT IS VERSION CONTROL

REPOSITORIES and WORKING
COPIES

• Version control uses a repository (a database of changes)
and a working copy where you do your work.

• Working copy (sometimes called a checkout) is your
personal copy of all the files in the project.

• A repository is a database of all the edits to, and/or
historical versions (snapshots) of, your project.

• The database contains a linear history: each change is
made after the previous one.

 Distributed and centralized version control
• Distributed version control is more modern, runs faster,

is less prone to errors, has more features, and is
somewhat more complex to understand.

 Distributed and centralized version control

• In centralized version control, there is just one
repository

Conflicts
• A conflict occurs when two different users make

simultaneous, different changes to the same line of a file.
In this case, the version control system cannot
automatically decide which of the two edits to use

• “Simultaneous” changes do not necessarily happen at
the exact same moment of time. Change 1 and Change 2
are considered simultaneous if:
1. User A makes Change 1 before he does an update

that brings Change 2 into his working copy
2. User B makes Change 2 before he does an update

that brings Change 1 into his working copy

 Merging
• Git merge will combine multiple sequences of

commits into one unified history. In the most
frequent use cases, git merge is used to combine
two branches.

Version control best practices

 Use a descriptive commit message
• It only takes a moment to write a good commit

message
• This is useful when someone is examining the change,

because it indicates the purpose of the change.

• This is useful when someone is looking for changes
related to a given concept, because they can search
through the commit messages.

 Avoid indiscriminate commits
• do not run git commit -a (or hg commit or svn commit)

without supplying specific files to commit

• Git: git commit file1 file2 commits the two
named files

• Mercurial: hg commit file1 file2 commits the
two named files

• This makes it easier to locate the changes related to
some particular feature or bug fix

 Incorporate others' changes frequently

• Work with the most up-to-date version of the files as
possible. That means that you should run git pull,
git pull -r, hg fetch, or svn update very
frequently.

• if someone else has already completed a change before
you even start to edit, it is a huge waste of time to create,
then manually resolve, conflicts.

 Remember that the tools are line-based

• Version control tools record changes and determine
conflicts on a line-by-line basis.

• Never refill/rejustify paragraphs. Doing so changes every
line of the paragraph. This makes it hard to determine,
later, what part of the content changed in a given commit.

• Do not write excessively long lines; as a general rule, keep
each line to 80 characters.

• The more characters are on a line, the larger the chance
that multiple edits will fall on the same line and thus will
conflict

 Don't commit generated files
• Version control is intended for files that people edit.

Generated files should not be committed to version
control

• do not commit binary files that result from compilation,
such as .o files .class or pdf files.

• Generated files are not necessary in version control;
each user can re-generate them

• tell your version control system to ignore given files,
create a top-level .gitignore or .hgignore file, or
set the svn:ignore property.

 Netbeans Git
practice demo

