
 1

Debugging
with

PyCharm
~0~

 2

What does it mean to debug a
program?

To debug simply means to locate and remove program bugs,
errors or abnormalities. It could be a period you put in the
wrong spot or something you forgot to comment out.

Python has it’s own built in debugger call pdb. It can be
called by an import statement. There is a python debugger for

each version of python 2.7, 3.5, 3.6 etc.

 3

The Python Debugger

In order to debug a program look to the top right of your
pycharm IDE. There you’ll see the name of your program, a
play button to run your program and a green bug to the
right of it.

BREAKPOINTS
During debugging sometimes we add breakpoints:

In software development, a breakpoint is an intentional
stopping or pausing place in a program, put in place for
debugging purposes. It is also sometimes simply referred to
as a pause. More generally, a breakpoint is a means of
acquiring knowledge about a program during its execution.

 4

PyCharm Debugger

With PyCharm, users can create several types of breakpoints.
Python Line breakpoint: these breakpoints are assigned to
lines of source code and are used to target a particular
section for debugging.

Temporary Line breakpoint: These breakpoints are assigned
to lines of source code and are use to target a particular
section for debugging but once this breakpoint is hit the
breakpoints are immediately removed.

There are also Django breakpoints, exception breakpoints,
and javascript breakpoints

PyCharm supports debugging for Python and Django
applications, classes, and files. The debugging functionality
is incorporated in PyCharm, you only need to configure its
settings.

Depending on the plugins enabled, PyCharm can also support
debugging for other languages, for example, JavaScript.

The JavaScript debugging functionality is incorporated in
PyCharm, you only need to configure its settings.

You can configure the debugger settings to support other
languages: To configure settings required for debugging,
perform the following general steps

In the Project Structure, configure the roots, dependencies
and libraries to be passed to the interpreter.

In the Settings/Preferences dialog box, configure the
debugger options:

Under the Build, Execution and Deployment section, click
Debugger, and configure the debugger options.

Under the Build, Execution and Deployment section, click
Python Debugger, and configure the Python debugger
options.

Pausing and Resuming the Debugger Session

Introduction

When a breakpoint is hit, or when a running thread or an
application is paused manually, the debugging session is
suspended.

Pausing the debugger session

Do any of the following:

On the main menu, choose Run | Pause Program.

Click on the Debug toolbar.

Note that the button is not available for Run/Debug
Configuration: Node.js, Run/Debug Configuration: Attach to
Node.js/Chrome, and Run/Debug Configuration: NodeUnit.

Resuming the debugger session

Do any of the following:

On the main menu, choose Run | Resume Program.

Click on the Debug toolbar.

Monitoring the Debug Information
The information on a debugging session is displayed in the

dedicated tabs of the Debug tool window named after the
selected run/debug configuration.

For each session, use the Console tab to view the debugger
messages and application output, and the Debug tab to
monitor threads and frames.

python debugToolWindow
Monitor debugger overhead
The debug process is part of the runtime and, therefore, may

impact performance. Every evaluation of an expression, or
stepping over the code use the same memory as the
debugged application, and may cause large overhead.

PyCharm lets you view this overhead so that you can quickly
detect what causes it and reduce it by removing
unnecessary breakpoints, disabling automatic evaluation of
expressions, turning off async stacktraces, etc.

To invoke the Overhead pane, click the overhead view icon in
the top-right corner of the Debug tool window:

Using a remote interpreter
Configuring a remote interpreter on Windows
Note that any remote interpreter will do.

Click Ctrl+Alt+S to open the Settings dialog on the Windows
machine (the whole process is described in the section
Accessing Settings).

Next, click the Project Interpreter node. On this page, click
the gear button (gear icon):

pygear button
Then choose the remote interpreter:

pyremote interpreter choose
Next, in the Configure Remote Python Interpreter dialog box,

click the Deployment Configuration radio-button:

Just a side note...If you click OK in the Configure Remote
Python Interpreter dialog box, then the system interpreter
/usr/bin/python specified in the Python interpreter path
field, will be used. However, if you click browseButton
next to the Python interpreter path field, you can specify,
say, virtual environment, that has been created on the
remote computer beforehand.

py remote interpreter via deployment configuration
Then click the browse button (browseButton) next to the

Deployment configuration field.

The Add server dialog box opens. There, enter the server
name (let it be MySFTPConnection) and choose the server
type from the drop-down list. Select SFTP to tell PyCharm
to transfer files over the SSH connection. Next, the
deployment settings dialog opens for MySFTPConnection.
In the

https://www.jetbrains.com/help/pycharm/working-with-run-debug-configurations.html

https://www.jetbrains.com/help/pycharm/working-with-run-debug-configurations.html

