Technical concepts

Comp 199

Admin

- Given I just started:
 - If there is anyone with a letter please see me.
- Google article.
- On the challenges of an always on digital world:
- http://www.cnn.com/2013/07/12/tech/social-media
- http://tv.msnbc.com/2013/08/13/pre-trial-hearings-

What is a computer?

• At its heart – what is a computer?

What is a computer?

- At its heart what is a computer?
 - A great big calculator with fancy input/output.
 - All it does in manipulate numbers.
 - Interpretation of those numbers is everything.
 - 01100110 what is this?

What is a computer?

- At its heart what is a computer?
 - A great big calculator with fancy input/output.
 - All it does in manipulate numbers.
 - Interpretation of those numbers is everything.
 - 01100110 what is this?
 - Integer? : 102
 - The single character 'f' (lower case f)
 - The last byte of the floating point number 27.3?

Binary

- Computers (all electronic computers) store data using electricity
 - Two states electricity on/electricity off
 - Interpreted as 1 / 0 respectively.
 - Long term storage magnetic, but used same 1,0 system.
 - So computers count and do arithmetic in binary (base 2)
 - Why do we use decimal (base 10)?

Base 2

Every time you count to two in your current "place value" (multiply by two) you need a new "placevalue"

- In decimal every time you get to ten you need a new place value: 1, 10, 100, 1000 etc
- In base two you have a new place value at
 - 2, 4, 8, 16, 32, 64 etc
 - So what integer is 00001010?
 - How about 01010101
- I'm using 8 'bits' because an 8bit BYTE is the smallest unit of data most computers recognize

A little bit of text in Binary

 What is the phrase "BSU Comp 199: Information Security" in binary?

A little bit of text in Binary

- What is the phrase "BSU Comp 199: Information Security" in binary?

Hexadecimal

- Fortunately no one ever uses pure binary any more
 - Except electrical engineers
 - Use hexadecimal instead. (Base 16)
 - Each of of those 8 bit bytes are a 2 digit hex number.
 - New place for every 16
 - Represent hex number "10" (single digit in base 16) as 'A', 11 as "B" and so on till 15=F
 - Fortunately don't have to memorize all of hex, tools exist which will show you hex and its equivelent characters.

A bit of text is Hex

- Same phrase: "BSU Comp 199: Information Security " in Hex:
 - 42 53 55 20 43 6f 6d 70 20 31 39 39 3a 20 49
 6e 66 6f 72 6d 61 74 69 6f 6e 20 53 65 63 75
 72 69 74 79

Character mappings

- Since most people don't read binary/hex and don't want to
 - Need a way to represent readable characters
 - Original Method: ASCII

Ascii and Character Sets

- American Standard Code for Information Interchange
 - original universal character set for computing
 - developed in early 1960s
 - mandated for all computers sold in US by Johnson in 1968
 - remained dominant till mid-1990s
 - 7-bit character set
 - 127 total characters possible
 - see printed chart of ascii characters

Ascii and the world

- US was largest consumer of computers in world in 1960s-1980s.
 - ASCII on all of them
 - many seminal programming languages developed in that time
 - what is the side effect?

Ascii and the world

- US was largest consumer of computers in world in 1960s-1980s.
 - ASCII on all of them
 - many seminal programming languages developed in that time
 - what is the side effect?
 - English became the de facto language for programming for a long time.
 - and for computer use
 - issues?

Computing and culture

• Today

- unicode (UTF-8) is standards
 - superset of ASCII with 32,767 possible characters.
 - nearly all of worlds languages have characters represented.
- All character sets map numbers stored in computer to an actual character.
- Viewers allow hex data to be shown side by side with the character equivalent
- (for text files)
- Text vs Binary files. list on board.

So the computer is a massive calculator storing lots of ones and zeros.

- But humans work with files
- Files basically strings of bits and bytes at specific points on disk – often with special series of bytes at the beginning and end.

File Identity

 How does the computer know how to interpret the file?

File Identity

- How does the computer know how to interpret the file?
 - Method 1: using file extensions.
 - Windows hides file extensions by default
 - But relies on them completely.
 - Demo
 - Method1: File signature
 - Those special bytes at the beginning of each file form its "signature"
 - Tell anyone who asks what type of file it really is.
 - Demo using linux/mac command line.

Storage 1: Traditional Hard Drive

Stores data magnetically

- See pict
- Spark (static electric) does major damage to data
- Magnetic charges still have residue even after overwrite
- Moving parts
 lifespan ~3 years
- Image from http://www.chicagojamscene.com

Storage 2: SSD

Solid State Drives (flash drives)

- Use electicity but not lost when power turned off
- Getting to be more and more common
- No moving parts, ave lifespan 4ish years
 - Much faster than HDD
- Downside for digital forensics
 - When the data is written over it is gone

Storage 3: Optical Storage

- Optical Storage: CDs DVDs Blu-Rays etc
- Thin layer of metal between two layers of hard plastic
 - Archival quality lasts for 25-50 years
 - Standard burn disks last about 10 years.

Storage 4: Tape drives

- Tape backup drives
 - Slow, large capacity magnetic tape backup
 - Still used very commonly till about 4-5 years ago
 - Why?
 - What is used now?

Memory vs Storage

Distinction in terms: Memory vs Storage

- Your book glosses over this
- Memory: volatile memory the working memory of the computer
 - Gone when power is off.
 - Like your short term memory/brain space
- Storage: long term storage
 - Retained when power is off
 - · Where your programs and data are saved
- Out of memory error can only be solved by closing programs, not by freeing up "disk" space.

Computing Environments

Stand alone computer

- All data on that device
- Very few (that matter) left these days
- Networked computer
 - Data could be on device or on network,
 - much more complicated
 - Much more common

Mainframes

- Large centralized server type computer all data and processing centralized
- Still common for some large business functions

Computing Environments II: Cloud

Cloud Computing

- More and more common today:
- Examples?

Computing Environments II: Cloud

Cloud Computing

- More and more common today:
- Examples?
 - iCloud
 - Google apps

Two types that matter to us: (different from book)

- Storage on cloud
- Programs on cloud.
- Common sense issues for digital forensics?

Data types Jargon

Three types of data

- Active (the computer knows about it and is using it)
- Latent (the computer freed this up, but hasn't overwritten it yet so it can be retrieved with correct tools)
- Archived
 - Backed up on tape or other archival media.
 - Book warning about obsolete formats
 - Like what?

File Systems Terms

Three most common on desktops

- FAT (File allocation table)
 - Old system used in DOS and updated over time
 - Little or no protection for files
 - Used for inter-operating system compatibility.
- NTFS
 - Used in modern versions of windows
 - Non-case sensitive
 - More protections than FAT, less than some others.
- HFS and friends
 - Used in modern versions of MacOS
- EXT3: default used for linux.

Storing files on Magnetic drives

Walk through diagrams from book

