Game Programming

Animated Sprites



Admin

* Exam, Bridgewater 2-step in Nov ()
* and Quiz Schedule

— Any concerns?

* Next Project at midterm next week for night class.



Animated Sprites I

* This is something that many game engines hide from you,
but you should understand how it is done even if you use
an engine

* So far we have a static image moving around the screen
as a sprite
- All well and good, but we'd like to have an animated sprite

- Afirst pass:

* Use animated qifs

* Why is this undesirable?



Animated Sprites I

* So far we have a static image moving around the screen as
a sprite

- All well and good, but we'd like to have an animated sprite

- Afirst pass:

* Use animated qifs
* Why is this undesirable?
* Well Animated gifs are self animating

- Want to pause animations when pausing the game
- Or at win/loss of game



Animated Sprites II

* We need to create our own animated sprites

* Basic Idea:

- Take the series of related images

- Draw them on at a time till each has been displayed

* Then start again

* Have to be sure not to cycle the images too fast
- Ebiten

* We have to do this ourselves again



Animated Sprites II

* We need to create our own animated sprites

 Basic Idea:

- Take the series of related images

- Draw them one at a time till each has been displayed
* Then start again
* Have to be sure not to cycle the images too fast

- Libraries I've used in the past

* Pygame: need to do this ourselves

* Arcade: two animated sprite classes available to us, but
recommendation to roll your own



Images or Spritesheets

* Once upon a time

- DOS (includes windows 95/98) limited number of files per folder
* So spritesheet
- And then for 15 years or so
* Lots of individual images used
- Then/now for web games
* Spritesheet
- For local games
* Which ever.

* Lots of games use either approach.



Animated Sprite

* I've got this animated coin spritesheet
- https://opengameart.org/content/spinning-coin-animation-atlas
— Coin_Spin_Animation_A.png

- I've gotitin a subfolder of my
standard Assets subfolder called
Things

- Image is 2048x2048

* With four images per row/column @ @ @

* Means that each image is 512 pixels



https://opengameart.org/content/spinning-coin-animation-atlas

Ebitengine Animation

* Ebitengine

- Do the animation yourself
¢ Often hidden by engines like Unity/Unreal/Godot etc.
- When working with a sprite sheet

* Use ebiten.Image SubImage method
* func (i *Image) SubImage(r image.Rect) image.Image
* image.Rectangle

- Pass lower left x, lower left y, upper right x and upper righty



Utility function

* You might use this or a similar utility function in all of
your projects

func (folderName string, imageName string) *ebiten.Image {
embeddedFile, err := EmbeddedAssets.Open(path.Join("assets", folderName, imageName))
if err 1= nil {
log.Fatal("failed to load embedded image ", imageName, err)
}
ebitenImage, _, err := ebitenutil. NewImageFromReader(embeddedFile)
if err 1= nil {
fmt.PrintIn("Error loading tile image:", imageName, err)
}

return ebitenImage



The Exemplar Project

* For this next few slides you can find the complete stripped
down project here:

* https://github.com/jsantore/AnimatedSprite


https://github.com/jsantore/AnimatedSprite

The Beginning

bed"

1ub.com/hajimehoshi/ebiten/v2"
1ub.com/hajimehoshi/ebiten/v2/ebitenutil”
agell

h"

hed assets/*
eddedAssets embed.FS

DOW_WIDTH = 1000
DOW_HEIGHT = 1000
\_DIMENSION = 512.0
VE_COUNT =4



Game Struct, layout and main

type AnimatedSpriteDemo struct {
Coinlmage *ebiten.Image
xFrame int
yFrame int
FrameDelay int

}

func (demo AnimatedSpriteDemo) (outsideWidth, outsideHeight int) (screenWidth, screenHeight int) {
return outsideWidth, outsideHeight

}

func () {
coin := LoadEmbeddedImage("", "Coin_Spin_Animation_A.png")
demo := AnimatedSpriteDemo{CoinImage: coin} //xFrame and yFrame deliberately O
ebiten.SetWindowSize(WINDOW _WIDTH, WINDOW _HEIGHT)
ebiten.SetWindowTitle("Sprite animation on Sprite Sheet")
err := ebiten.RunGame(&demo)

if err 1= nil {
fmt.Printin("Error running game:", err)
}



Update and Draw

func (demo *AnimatedSpriteDemo) () error {
demo.xFrame += 1
if demo.xFrame >= FRAME_COUNT {
demo.xFrame =0

demo.yFrame += 1
if demo.yFrame >= FRAME_COUNT {

demo.yFrame =0

3,
return nil
}
func (demo *AnimatedSpriteDemo) (screen *ebiten.Image) {

op := &ebiten.DrawlmageOptions{}

op.GeoM.Translate(COIN_DIMENSION/2, COIN_DIMENSION/2)

frameX := demo.xFrame * COIN_DIMENSION

frameY := demo.yFrame * COIN_DIMENSION

screen.Drawlmage(demo.Coinlmage.SubImage(image.Rect(frameX, framey,
frameX+COIN_DIMENSION, frameY+COIN_DIMENSION)).(*ebiten.Image), op)



That's pretty fast

* How could we fix that?



That's pretty fast

* How could we fix that?
- Only call update_animation a few times per second

* Updated __init__and update

func (demo *AnimatedSpriteDemo) () error {
demo.FrameDelay += 1
if demo.FrameDelay%5 == 0{ //adjust this to speed up or slow down the animation
demo.xFrame += 1
if demo.xFrame >= FRAME_COUNT {
demo.xFrame =0
demo.yFrame += 1
if demo.yFrame >= FRAME_COUNT {
demo.yFrame =0
}
}
}

return nil



List of images

* The other way is to use a folder full of images

- For this I'll use the victory dance set from the raccoon

* https://opengameart.org/content/cute-raccoon-2d-game-sprite-a
nd-animations

* Then grab the images out of the victory dance folder.

- I've got them in Assets/raccoon

- If we look at them we see that we have 14 images.


https://opengameart.org/content/cute-raccoon-2d-game-sprite-and-animations
https://opengameart.org/content/cute-raccoon-2d-game-sprite-and-animations

Program incidentals

* Even smaller than last time

import (
"embed"
"fmt"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/ebitenutil”
"log"
"path"

)

//go:embed assets/*
var EmbeddedAssets embed.FS

type AnimatedSpriteDemo2 struct {
Raccoon []*ebiten.Image
Frame int
FrameDelay int



Main and Load

func 0{
frames := LoadAllRaccoons()
ebiten.SetWindowsSize(1000, 1000)
ebiten.SetWindowTitle("sliceOflmeages")
demo := AnimatedSpriteDemo2{
Raccoon: frames,
Frame: O,
FrameDelay: O,

}

ebiten.RunGame(&demo)

}

func () [I*ebiten.Image {
all frames := ([1*ebiten.Image, 14, 20)
suffix_list := [Jstring{"01", "03", "05", "07", "09", "11", "13", "15", "17", "19", "21", "23", "25", "27"}
for index, suffix := range suffix_list {
filename := fmt.Sprintf("victory-dance00%s.png", suffix)
frame_pict := LoadEmbeddedImage("victory-dance", filename)
all_frames[index] = frame_pict

}

return all_frames



Game Interface

func (demo *AnimatedSpriteDemo?2) () error {
demo.FrameDelay += 1
if demo.FrameDelay%5 == 0 {
demo.Frame +=1
if demo.Frame >= len(demo.Raccoon) {
demo.Frame =0

}
}
return nil
}
func (demo AnimatedSpriteDemo2) (screen *ebiten.Image) {
drawOps := ebiten.DrawImageOptions{}
drawOps.GeoM.Reset()
//drawOps.GeoM.Translate(float64(WINDOW_WIDTH/2), float64(WINDOW_HEIGHT/2))
screen.Drawlmage(demo.Raccoon[demo.Frame], &drawOps)
}
func (demo AnimatedSpriteDemo?2) (outsideWidth, outsideHeight int) (screenWidth, screenHeight int) {

return outsideWidth, outsideHeight
}



Character image

* Now lets look at a left right walking sprite

- I'm using the sprite sheet from this javascript tutorial

- https://blaiprat.github.io/jquery.animateSprite/


https://blaiprat.github.io/jquery.animateSprite/

Examining the Image

e FFREGFEE
ZERIBERYY

* Dimensions: 864x280 pixels

- Two rows: 280/2— image height is 140 pixels
- Eight Columns: 864/8 — image width is 108 pixels



Examining the Image

e FFREGFEE
ZERIBERYY

* Dimensions: 864x280 pixels

- Two rows: 280/2— image height is 140 pixels
- Eight Columns: 864/8 — image width is 108 pixels



Enumerated Type

* What is an enumerated type?



Enumerated Type

* What is an enumerated type?
- In most languages: a constrained finite set of values for
limited number of options

* Days of the week popular example

* Maybe direction of travel in games



Enumerated Type in go

* Go doesn't have an exact enumerated type instead use
const

const
UP = iota
DOWN
LEFT
RIGHT

* Iota is a special keyword that evaluates to zero

— Others will be incremented by one. Eg: LEFT is 2



| ets take a look

* Lets have a look and try it out

* https://github.com/jsantore/AnimatedSprite


https://github.com/jsantore/AnimatedSprite
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