
Game Programming
Animated Sprites

Admin
● Exam, Bridgewater 2-step in Nov ()
● and Quiz Schedule

– Any concerns?
● Next Project at midterm next week for night class.

Animated Sprites I
● This is something that many game engines hide from you,

but you should understand how it is done even if you use
an engine

● So far we have a static image moving around the screen
as a sprite
– All well and good, but we’d like to have an animated sprite
– A first pass:

● Use animated gifs
● Why is this undesirable?

Animated Sprites I
● So far we have a static image moving around the screen as

a sprite
– All well and good, but we’d like to have an animated sprite
– A first pass:

● Use animated gifs
● Why is this undesirable?
● Well Animated gifs are self animating

– Want to pause animations when pausing the game
– Or at win/loss of game

–

Animated Sprites II
● We need to create our own animated sprites
● Basic Idea:

– Take the series of related images
– Draw them on at a time till each has been displayed

● Then start again
● Have to be sure not to cycle the images too fast

– Ebiten
● We have to do this ourselves again

Animated Sprites II
● We need to create our own animated sprites
● Basic Idea:

– Take the series of related images
– Draw them one at a time till each has been displayed

● Then start again
● Have to be sure not to cycle the images too fast

– Libraries I've used in the past
● Pygame: need to do this ourselves
● Arcade: two animated sprite classes available to us, but

recommendation to roll your own

Images or Spritesheets
● Once upon a time

– DOS (includes windows 95/98) limited number of files per folder
● So spritesheet

– And then for 15 years or so
● Lots of individual images used

– Then/now for web games
● Spritesheet

– For local games
● Which ever.
● Lots of games use either approach.

Animated Sprite
● I’ve got this animated coin spritesheet

– https://opengameart.org/content/spinning-coin-animation-atlas

– Coin_Spin_Animation_A.png
– I’ve got it in a subfolder of my

standard Assets subfolder called
Things

– Image is 2048x2048
● With four images per row/column
● Means that each image is 512 pixels
●

https://opengameart.org/content/spinning-coin-animation-atlas

Ebitengine Animation
● Ebitengine

– Do the animation yourself
● Often hidden by engines like Unity/Unreal/Godot etc.

– When working with a sprite sheet
● Use ebiten.Image SubImage method
● func (i *Image) SubImage(r image.Rect) image.Image
● image.Rectangle

– Pass lower left x, lower left y, upper right x and upper right y

Utility function
● You might use this or a similar utility function in all of

your projects
func LoadEmbeddedImage(folderName string, imageName string) *ebiten.Image {

embeddedFile, err := EmbeddedAssets.Open(path.Join("assets", folderName, imageName))
if err != nil {

log.Fatal("failed to load embedded image ", imageName, err)
}
ebitenImage, _, err := ebitenutil.NewImageFromReader(embeddedFile)
if err != nil {

fmt.Println("Error loading tile image:", imageName, err)
}
return ebitenImage

}

The Exemplar Project
● For this next few slides you can find the complete stripped

down project here:
● https://github.com/jsantore/AnimatedSprite

https://github.com/jsantore/AnimatedSprite

The Beginning
import (

"embed"
"fmt"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/ebitenutil"
"image"
"log"
"path"

)

//go:embed assets/*
var EmbeddedAssets embed.FS

const (
WINDOW_WIDTH = 1000
WINDOW_HEIGHT = 1000
COIN_DIMENSION = 512.0
FRAME_COUNT = 4

)

Game Struct, layout and main
type AnimatedSpriteDemo struct {

CoinImage *ebiten.Image
xFrame int
yFrame int
FrameDelay int

}

func (demo AnimatedSpriteDemo) Layout(outsideWidth, outsideHeight int) (screenWidth, screenHeight int) {
return outsideWidth, outsideHeight

}

func main() {
coin := LoadEmbeddedImage("", "Coin_Spin_Animation_A.png")
demo := AnimatedSpriteDemo{CoinImage: coin} //xFrame and yFrame deliberately 0
ebiten.SetWindowSize(WINDOW_WIDTH, WINDOW_HEIGHT)
ebiten.SetWindowTitle("Sprite animation on Sprite Sheet")
err := ebiten.RunGame(&demo)
if err != nil {
fmt.Println("Error running game:", err)
}

}

Update and Draw
func (demo *AnimatedSpriteDemo) Update() error {

demo.xFrame += 1
if demo.xFrame >= FRAME_COUNT {
 demo.xFrame = 0
 demo.yFrame += 1
 if demo.yFrame >= FRAME_COUNT {
 demo.yFrame = 0
}}
return nil

}

func (demo *AnimatedSpriteDemo) Draw(screen *ebiten.Image) {
op := &ebiten.DrawImageOptions{}
op.GeoM.Translate(COIN_DIMENSION/2, COIN_DIMENSION/2)
frameX := demo.xFrame * COIN_DIMENSION
frameY := demo.yFrame * COIN_DIMENSION
screen.DrawImage(demo.CoinImage.SubImage(image.Rect(frameX, frameY,
 frameX+COIN_DIMENSION, frameY+COIN_DIMENSION)).(*ebiten.Image), op)

}

That’s pretty fast
● How could we fix that?

That’s pretty fast
● How could we fix that?

– Only call update_animation a few times per second
● Updated __init__ and update

func (demo *AnimatedSpriteDemo) Update() error {
demo.FrameDelay += 1
if demo.FrameDelay%5 == 0 { //adjust this to speed up or slow down the animation
 demo.xFrame += 1
 if demo.xFrame >= FRAME_COUNT {
 demo.xFrame = 0
 demo.yFrame += 1
 if demo.yFrame >= FRAME_COUNT {
 demo.yFrame = 0
 }
 }
}
return nil

}

List of images
● The other way is to use a folder full of images

– For this I’ll use the victory dance set from the raccoon
● https://opengameart.org/content/cute-raccoon-2d-game-sprite-a

nd-animations
● Then grab the images out of the victory dance folder.

– I’ve got them in Assets/raccoon
– If we look at them we see that we have 14 images.

https://opengameart.org/content/cute-raccoon-2d-game-sprite-and-animations
https://opengameart.org/content/cute-raccoon-2d-game-sprite-and-animations

Program incidentals
● Even smaller than last time

import (
"embed"
"fmt"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/ebitenutil"
"log"
"path"

)

//go:embed assets/*
var EmbeddedAssets embed.FS

type AnimatedSpriteDemo2 struct {
Raccoon []*ebiten.Image
Frame int
FrameDelay int

}

Main and Load
func main() {

frames := LoadAllRaccoons()
ebiten.SetWindowSize(1000, 1000)
ebiten.SetWindowTitle("sliceOfImeages")
demo := AnimatedSpriteDemo2{

Raccoon: frames,
Frame: 0,
FrameDelay: 0,

}
ebiten.RunGame(&demo)

}

func LoadAllRaccoons() []*ebiten.Image {
all_frames := make([]*ebiten.Image, 14, 20)
suffix_list := []string{"01", "03", "05", "07", "09", "11", "13", "15", "17", "19", "21", "23", "25", "27"}
for index, suffix := range suffix_list {

filename := fmt.Sprintf("victory-dance00%s.png", suffix)
frame_pict := LoadEmbeddedImage("victory-dance", filename)
all_frames[index] = frame_pict

}
return all_frames

}

Game Interface
func (demo *AnimatedSpriteDemo2) Update() error {

demo.FrameDelay += 1
if demo.FrameDelay%5 == 0 {
demo.Frame += 1
if demo.Frame >= len(demo.Raccoon) {
demo.Frame = 0
}
}
return nil

}

func (demo AnimatedSpriteDemo2) Draw(screen *ebiten.Image) {
drawOps := ebiten.DrawImageOptions{}
drawOps.GeoM.Reset()
//drawOps.GeoM.Translate(float64(WINDOW_WIDTH/2), float64(WINDOW_HEIGHT/2))
screen.DrawImage(demo.Raccoon[demo.Frame], &drawOps)

}

func (demo AnimatedSpriteDemo2) Layout(outsideWidth, outsideHeight int) (screenWidth, screenHeight int) {
return outsideWidth, outsideHeight

}

Character image
● Now lets look at a left right walking sprite

– I’m using the sprite sheet from this javascript tutorial
– https://blaiprat.github.io/jquery.animateSprite/
–

https://blaiprat.github.io/jquery.animateSprite/

Examining the Image
● Image:
●

● Dimensions: 864x280 pixels
– Two rows: 280/2 image height is 140 pixels→
– Eight Columns: 864/8 image width is 108 pixels→

Examining the Image
● Image:
●

● Dimensions: 864x280 pixels
– Two rows: 280/2 image height is 140 pixels→
– Eight Columns: 864/8 image width is 108 pixels→

Enumerated Type
● What is an enumerated type?

Enumerated Type
● What is an enumerated type?

– In most languages: a constrained finite set of values for
limited number of options

● Days of the week popular example
● Maybe direction of travel in games

Enumerated Type in go
● Go doesn't have an exact enumerated type instead use

const
const(

UP = iota
DOWN
LEFT
RIGHT

)

● Iota is a special keyword that evaluates to zero
– Others will be incremented by one. Eg: LEFT is 2

Lets take a look
● Lets have a look and try it out
● https://github.com/jsantore/AnimatedSprite
●

https://github.com/jsantore/AnimatedSprite

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

