
Game Programming
Animated Sprites



Admin
● Exam, Bridgewater 2-step in Nov () 
● and Quiz Schedule

– Any concerns?
● Next Project at midterm next week for night class.



Animated Sprites I
● This is something that many game engines hide from you, 

but you should understand how it is done even if you use 
an engine

● So far we have a static image moving around the screen 
as a sprite
– All well and good, but we’d like to have an animated sprite
– A first pass:

● Use animated gifs
● Why is this undesirable? 



Animated Sprites I
● So far we have a static image moving around the screen as 

a sprite
– All well and good, but we’d like to have an animated sprite
– A first pass:

● Use animated gifs
● Why is this undesirable?
● Well Animated gifs are self animating

– Want to pause animations when pausing the game
– Or at win/loss of game

–  



Animated Sprites II
● We need to create our own animated sprites
● Basic Idea:

– Take the series of related images
– Draw them on at a time till each has been displayed

● Then start again
● Have to be sure not to cycle the images too fast

– Ebiten
● We have to do this ourselves again



Animated Sprites II
● We need to create our own animated sprites
● Basic Idea:

– Take the series of related images
– Draw them one at a time till each has been displayed

● Then start again
● Have to be sure not to cycle the images too fast

– Libraries I've used in the past
● Pygame: need to do this ourselves
● Arcade: two animated sprite classes available to us, but 

recommendation to roll your own



Images or Spritesheets
● Once upon a time

– DOS (includes windows 95/98) limited number of files per folder
● So spritesheet

– And then for 15 years or so 
● Lots of individual images used

– Then/now for web games 
● Spritesheet

– For local games
● Which ever.
● Lots of games use either approach. 



Animated Sprite
● I’ve got this animated coin spritesheet

– https://opengameart.org/content/spinning-coin-animation-atlas

– Coin_Spin_Animation_A.png
– I’ve got it in a subfolder of my 

standard Assets subfolder called
Things

– Image is 2048x2048
● With four images per row/column
● Means that each image is 512 pixels
●

https://opengameart.org/content/spinning-coin-animation-atlas


Ebitengine Animation
● Ebitengine

– Do the animation yourself
● Often hidden by engines like Unity/Unreal/Godot etc.

– When working with a sprite sheet
● Use ebiten.Image SubImage method
● func (i *Image) SubImage(r image.Rect) image.Image
● image.Rectangle 

– Pass lower left x, lower left y, upper right x and upper right y



Utility function
● You might use this or a similar utility function in all of 

your projects
func LoadEmbeddedImage(folderName string, imageName string) *ebiten.Image {

embeddedFile, err := EmbeddedAssets.Open(path.Join("assets", folderName, imageName))
if err != nil {

log.Fatal("failed to load embedded image ", imageName, err)
}
ebitenImage, _, err := ebitenutil.NewImageFromReader(embeddedFile)
if err != nil {

fmt.Println("Error loading tile image:", imageName, err)
}
return ebitenImage

}



The Exemplar Project 
● For this next few slides you can find the complete stripped 

down project here: 
● https://github.com/jsantore/AnimatedSprite 

https://github.com/jsantore/AnimatedSprite


The Beginning
import (

"embed"
"fmt"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/ebitenutil"
"image"
"log"
"path"

)

//go:embed assets/*
var EmbeddedAssets embed.FS

const (
WINDOW_WIDTH   = 1000
WINDOW_HEIGHT  = 1000
COIN_DIMENSION = 512.0
FRAME_COUNT    = 4

)



Game Struct, layout and main
type AnimatedSpriteDemo struct {

CoinImage  *ebiten.Image
xFrame     int
yFrame     int
FrameDelay int

}

func (demo AnimatedSpriteDemo) Layout(outsideWidth, outsideHeight int) (screenWidth, screenHeight int) {
return outsideWidth, outsideHeight

}

func main() {
coin := LoadEmbeddedImage("", "Coin_Spin_Animation_A.png")
demo := AnimatedSpriteDemo{CoinImage: coin} //xFrame and yFrame deliberately 0
ebiten.SetWindowSize(WINDOW_WIDTH, WINDOW_HEIGHT)
ebiten.SetWindowTitle("Sprite animation on Sprite Sheet")
err := ebiten.RunGame(&demo)
if err != nil {
fmt.Println("Error running game:", err)
}

}



Update and Draw
func (demo *AnimatedSpriteDemo) Update() error {

demo.xFrame += 1
if demo.xFrame >= FRAME_COUNT {
   demo.xFrame = 0
   demo.yFrame += 1
   if demo.yFrame >= FRAME_COUNT {
      demo.yFrame = 0
}}
return nil

}

func (demo *AnimatedSpriteDemo) Draw(screen *ebiten.Image) {
op := &ebiten.DrawImageOptions{}
op.GeoM.Translate(COIN_DIMENSION/2, COIN_DIMENSION/2)
frameX := demo.xFrame * COIN_DIMENSION
frameY := demo.yFrame * COIN_DIMENSION
screen.DrawImage(demo.CoinImage.SubImage(image.Rect(frameX, frameY,
                        frameX+COIN_DIMENSION, frameY+COIN_DIMENSION)).(*ebiten.Image), op)

}



That’s pretty fast
● How could we fix that?



That’s pretty fast
● How could we fix that?

– Only call update_animation a few times per second
● Updated __init__ and update

func (demo *AnimatedSpriteDemo) Update() error {
demo.FrameDelay += 1
if demo.FrameDelay%5 == 0 {   //adjust this to speed up or slow down the animation
 demo.xFrame += 1
 if demo.xFrame >= FRAME_COUNT {
  demo.xFrame = 0
  demo.yFrame += 1
  if demo.yFrame >= FRAME_COUNT {
   demo.yFrame = 0
  }
  }
}
return nil

}



List of images
● The other way is to use a folder full of images

– For this I’ll use the victory dance set from the raccoon
● https://opengameart.org/content/cute-raccoon-2d-game-sprite-a

nd-animations
● Then grab the images out of the victory dance folder.

– I’ve got them in Assets/raccoon
– If we look at them we see that we have 14 images.

https://opengameart.org/content/cute-raccoon-2d-game-sprite-and-animations
https://opengameart.org/content/cute-raccoon-2d-game-sprite-and-animations


Program incidentals
● Even smaller than last time

import (
"embed"
"fmt"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/ebitenutil"
"log"
"path"

)

//go:embed assets/*
var EmbeddedAssets embed.FS

type AnimatedSpriteDemo2 struct {
Raccoon    []*ebiten.Image
Frame      int
FrameDelay int

}



Main and Load
func main() {

frames := LoadAllRaccoons()
ebiten.SetWindowSize(1000, 1000)
ebiten.SetWindowTitle("sliceOfImeages")
demo := AnimatedSpriteDemo2{

Raccoon:    frames,
Frame:      0,
FrameDelay: 0,

}
ebiten.RunGame(&demo)

}

func LoadAllRaccoons() []*ebiten.Image {
all_frames := make([]*ebiten.Image, 14, 20)
suffix_list := []string{"01", "03", "05", "07", "09", "11", "13", "15", "17", "19", "21", "23", "25", "27"}
for index, suffix := range suffix_list {

filename := fmt.Sprintf("victory-dance00%s.png", suffix)
frame_pict := LoadEmbeddedImage("victory-dance", filename)
all_frames[index] = frame_pict

}
return all_frames

}



Game Interface
func (demo *AnimatedSpriteDemo2) Update() error {

demo.FrameDelay += 1
if demo.FrameDelay%5 == 0 {
demo.Frame += 1
if demo.Frame >= len(demo.Raccoon) {
demo.Frame = 0
}
}
return nil

}

func (demo AnimatedSpriteDemo2) Draw(screen *ebiten.Image) {
drawOps := ebiten.DrawImageOptions{}
drawOps.GeoM.Reset()
//drawOps.GeoM.Translate(float64(WINDOW_WIDTH/2), float64(WINDOW_HEIGHT/2))
screen.DrawImage(demo.Raccoon[demo.Frame], &drawOps)

}

func (demo AnimatedSpriteDemo2) Layout(outsideWidth, outsideHeight int) (screenWidth, screenHeight int) {
return outsideWidth, outsideHeight

}



Character image
● Now lets look at a left right walking sprite

– I’m using the sprite sheet from this javascript tutorial
– https://blaiprat.github.io/jquery.animateSprite/
–

https://blaiprat.github.io/jquery.animateSprite/


Examining the Image
● Image:
●

● Dimensions: 864x280 pixels
– Two rows: 280/2  image height is 140 pixels→
– Eight Columns: 864/8  image width is 108 pixels→



Examining the Image
● Image:
●

● Dimensions: 864x280 pixels
– Two rows: 280/2  image height is 140 pixels→
– Eight Columns: 864/8  image width is 108 pixels→



Enumerated Type
● What is an enumerated type?



Enumerated Type
● What is an enumerated type?

– In most languages: a constrained finite set of values for 
limited number of options

● Days of the week popular example
● Maybe direction of travel in games



Enumerated Type  in go
● Go doesn't have an exact enumerated type instead use 

const
const(

UP = iota
DOWN
LEFT
RIGHT

)

● Iota is a special keyword that evaluates to zero
– Others will be incremented by one. Eg: LEFT is 2



Lets take a look
● Lets have a look and try it out
● https://github.com/jsantore/AnimatedSprite
●

https://github.com/jsantore/AnimatedSprite
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