Comp 152

Recursion
Solving problems

- In Math
 - many problems are solved using smaller versions of the same problem
 - Fibonacci numbers
- In Philosophy
 - inductive proofs
 - show base case is true
 - show that each later case follows from simple step and earlier case
Use the same technique in CS

• We can use the same inductive technique in our programming
 • recursion.
Simple example

- Triangle numbers
 - Compute the area of a triangle of width \(n \)
 - Assume each [] square has an area of 1
 - Also called the \(n \)th triangle number
 - The third triangle number is 6
 - []
 - []
 - [][]
 - [][][]
Class to solve: OutLine

- public class Triangle{
 - public Triangle(int aWidth){
 - width = aWidth;
 - }
 -
 - private int width;
 - }

 - what really interesting method is glossed over here?
The base – easy case

- First check the easy case
 - The triangle consists of a single square
 - Its area is 1
 - Add the code to getArea method for width 1
 - public int getArea()
 - {
 - if (width == 1) return 1;
 - ...
 - }
the General Case

• Remember: A small change and an easier case

 • Assume we know the area of the smaller, colored triangle

 - []
 - [][]
 - [][]
 - [][]
 - [][]

• Area of larger triangle can be calculated as:

 - smallerArea + width

• so how do we calculate the smallerArea?
• To get the area of the smaller triangle
• Make a smaller triangle and ask it for its area
• Triangle smallerTriangle = new Triangle(width - 1);
• int smallerArea = smallerTriangle.getArea();
The complete getArea Method

- public int getArea()
- {
- if (width == 1) return 1;
- Triangle smallerTriangle = new Triangle(width - 1);
- int smallerArea = smallerTriangle.getArea();
- return smallerArea + width;
- }
Walkthrough of width 4

- getArea method makes a smaller triangle of width 3
 - It calls getArea on that triangle
 - That method makes a smaller triangle of width 2
 - It calls getArea on that triangle
 - That method makes a smaller triangle of width 1
 - It calls getArea on that triangle
 - That method returns 1
 - The method returns smallerArea + width = 1 + 2 = 3
 - The method returns smallerArea + width = 3 + 3 = 6
- The method returns smallerArea + width = 6 + 4 = 10
Recursion in Programming

- A recursive computation solves a problem by using the solution of the same problem with simpler values

- For recursion to terminate,
 - there must be special cases for the simplest inputs.
 - To complete our Triangle example, we must handle width ≤ 0
 - `if (width <= 0) return 0;`
 - Two key requirements for recursion success:
 - Every recursive call must simplify the computation in some way
 - There must be special cases to handle the simplest computations directly
There are other ways to compute it

- The area of a triangle equals the sum
 - $1 + 2 + 3 + \ldots + \text{width}$
- Using a simple loop:
 - `double area = 0;`
 - `for (int i = 1; i <= width; i++)`
 - `area = area + i;`
- Using math:
 - $1 + 2 + \ldots + n = n \times (n + 1)/2$
 - $=> \text{width} \times (\text{width} + 1) / 2$
- but recursive power useful for many types of problems
a nice problem for recursion.

- Problem: test whether a sentence is a palindrome
 - Palindrome: a string that is equal to itself when you reverse all characters
 - A man, a plan, a canal–Panama!
 - Go hang a salami, I'm a lasagna hog
 - Madam, I'm Adam
 - how would you design a recursive solution to this problem?
Sample code minus solution

- public class Sentence{
- public Sentence(String aText){
- text = aText;
- }
- public boolean isPalindrome() {
- ...
- }
- private String text;
- }
Thinking Recursively

• We need
 • a base case
 • a simpler version of the problem.

• Consider various ways to simplify inputs
 • Here are several possibilities:
 - Remove the first character
 - Remove the last character
 - Remove both the first and last characters
 - Remove a character from the middle
 - Cut the string into two halves

• do any sound good?
Recursive solutions: Simplification

- Combine solutions with simpler inputs into a solution of the original problem
 - Most promising simplification: remove first and last characters
 - "adam, I'm Ada", is a palindrome too!
 - Thus, a word is a palindrome if
 - The first and last letters match, and
 - Word obtained by removing the first and last letters is a palindrome
Simplification scenarios

- What if first or last character is not a letter?
 - Ignore it
- If the first and last characters are letters, check whether they match;
 - if so, remove both and test shorter string
 - If last character isn't a letter, remove it and test shorter string
 - If first character isn't a letter, remove it and test shorter string
Base Cases

- **Find solutions to the simplest inputs**
 - **Strings with two characters**
 - No special case required; step two still applies
 - **Strings with a single character**
 - They are palindromes
 - **The empty string**
 - It is a palindrome
So let's write it.

• on the board.
Recursive Efficiency I

- That was a lot of new String objects
 - more than really needed.
- check if substring is palindrome
- public boolean isPalindrome(int start, int end)
Questions! Hooray!!

- Do we have to give the same name to both isPalindrome methods?
 - is it a good idea?
 - what is it called?
- When does the recursive isPalindrome method stop calling itself?
Fibonacci

- I talked about this before – but how could we have a recursive Fibonacci solution?
- Recall
 - **Fibonacci sequence is a sequence of numbers defined by**
 - $f(1) = 1$
 - $f(2) = 1$
 - $f(n) = f(n-1) + f(n-2)$
 - First ten terms
 - 1, 1, 2, 3, 5, 8, 13, 21, 34, 55
How Do we produce a recursive fib calculator?

- What are the base cases?
- What about the recursive case?
- new wrinkle here.
Typical Recursive Solution

- /** Computes a Fibonacci number.
- @param n an integer
- @return the nth Fibonacci number
- */
- public static long fib(int n)
 {
 if (n <= 2) return 1;
 else return fib(n - 1) + fib(n - 2);
 }
Efficiency of Recursion II

• Recursive implementation of fib is straightforward
• if you ran test program you would see:
 • First few calls to fib are quite fast
 • For larger values, the program pauses an amazingly long time between outputs
• See chart next slide
Recursive Call tree for fib(6)

Do you see the problem?

![Call Pattern of the Recursive fib Method](image)

Figure 2 Call Pattern of the Recursive fib Method
Efficiency of Recursion III

- Occasionally, a recursive solution runs much slower than its iterative counterpart
 - In most cases, the recursive solution is only slightly slower
 - The iterative isPalindrome performs only slightly better than recursive solution
 - Each recursive method call takes a certain amount of processor time
• Smart compilers can avoid recursive method calls if they follow simple patterns
• Most compilers don't do that
• In many cases,
 • a recursive solution is easier to understand and implement correctly than an iterative solution
 • easy to understand == easier maintainance
 – usually better for much of your program.
• "To iterate is human, to recurse divine.", L. Peter Deutsch
Only one question? Say it isn't so!

- You can compute the factorial function either with a loop, using the definition that $n! = 1 \times 2 \times \ldots \times n$, or recursively, using the definition that $0! = 1$ and $n! = (n - 1)! \times n$. Is the recursive approach inefficient in this case?
“Mutually Recursive functions”

- Sometimes have solution that is not direct recursion
 - method a calls method b
 - method b called method a
 - still have to make sure each has
 - base case
 - simplified case.
Old Favorite

- Binary Search
 - Describe
 - Solve with students.
File / directory traversal

• Show directory traveling
 • Theoretical approach.
Reading

- Read Chapter 14 in Starting out with Java