

More Ruby

Lets look at some more basic ruby

More on Ruby Classes

● You can add another method to any class
– any time.

– If someone (ruby team) has written a class Fixnum
● add a method to the class in your own code
● class Fixnum

– def orderOfMagnitude
● self*10

– end

● comments?

Now some on collections in Ruby

● Next few slides intro to ruby collections
● already seen basic strings.

String Interpolation

● can put anything into a string
– including executable code

– “for example #{ } “

– anything in #{ } is executed and its result converted
to a string which is inserted at that point.

– variables, code, whatever.

–

String manipulation
● substitutions

– sub(<substring>, <newReplacement>)
● replace first substring with newReplacement

– gsub(<substring>, <newReplacement>)
● as above, but replace all occurrences

– regular expressions
● /<expr>/
● ^ = beginning of line
● . = any character
● $ = end of line
● [<element1><element2> etc] any of the elements listed
● see page 54 table 3-4 for more

Matching + split

● Might be useful for the lab
● instead of substituting

– =~

– “string” =~ “str”

– “is this true” =~ /[1-4]/

● Split method
– split(<regexp>)

● split string into array of substrings based on regexp as
separator

Arrays

● objects of course
● use [] operator as in other languages
● x = [1, 2, “three”, 4]
● zero based
● x[5] returns nothing (nil)

– no nasty error

● add elements to end
– <<

–

Arrays II

● Array methods
– pop

● returns last element and removes it

– length

– join(<string>)
● opposite of string.split
● returns a string of all of the elements in array with

<string> between each element in the resulting string.

– inspect
● return printable form of array.

Array Iteration.

● Iteration is object specific in ruby, arrays too
– each method iterates over array

– use { |<var>| <code> } notation.

– each
● <array>.each{<code here>}
● non-destructively iterate over array.

– collect
● <array>.collect{ <code here>}
● destructively iterate over array

– result of code is placed in each array location.

More array methods

● methods of arrays in ruby
– empty?

● ? is part of the method name
● true is array has no elements

– include?
● [1, “this”, 35.3].include?(“this”)
● true if the parameter is in the array

– named elements
● first
● last

– return the first and last elements of the array respectively

Hashes

● Hashes are built in in ruby
– hash or dictionary

– { <key> => <value>, <key> => <value>....}
● when writing them out.

– eg
● dict = {'cat'=>'feline animal', 'dog' => 'canine animal'}
● dict.size returns 2

– use
● dict['cat']

– returns 'feline animal'

Hashes II

● methods on hashes
– each # functions like each on arrays

● passes two variables to the code block though.

– keys
● retrieves and array of the keys

– delete(<key>)
● deletes the <key>=><value> pair from the hash

Ranges

● Ruby has a class with a notion of a range
– numeric, alphabetic and so on

– eg
● ('A'..'Z')
● (1..100)

– methods (many similar to arrays and all collections)

– to_a (converts range to array with all elements filled
out.

– include?

Opening a file

● Two ways
– File.open(<filename>)<code block>

● opens <file name> and executes code block then closes
file.

● seems to be most common for reading
● use each method to do something with each line.

– File.new(<filename>, <mode>)
● returns a file object, filename and mode are both strings
● mode is standard modes r, w, a, rw, etc

– need to call close on the resulting object when done
in this scenario.

Reading Assignment

● Read chapters 4 and 5 in the ruby book.
● again cheerleading warning in chapter 5
● strong strong STRONG encouragement: read

Chapter 4 before beginning the lab.

