

Ruby

A first pass look at the Ruby programming
language

Comments

● First and foremost
– how can I put a note in a program so I can

understand it next semester

– # is the line comment character
● like in python
● same as // in java or C

– block comments are strongly discouraged but still
available

● begin and end block comments with
– =begin
– =end

Ruby: Dynamically typed

● what does that mean for programming
– no need to declare and declare type of var before

using them

– if you want a var that holds a string to hold a
FixNum (like and int) fine do it

● x = “this”
● x = 10
● will work fine for ruby
● note single equals assignment like in java/C
● note that = is used as assignment in Ruby

Identifiers

● Variable Names
– same names allowed as Java

● letters numbers and underscore
– no numbers to start identifier

– variable identifiers beginning with Capital letter are
treated as constant in Ruby

● though like Python and lisp, constants are more
recommendations than enforced by interpreter

– get warning when changing value
– but interpreter changes value

types

● In Ruby everything is an object
– same as in python

– numbers are all objects
● have methods already defined on them

– Strings are objects
● no C-strings
● like Java

Numbers

● Fixnum
– default integer type

– range is implementation specific
● but if you follow Java/C int ranges probably safe

– range is native machine word minus one bit
● if number goes out of range auto converts to BigNum

– what does this imply for code safety?

● Float
– uses native double precision floating point

representation

– like java/c double

Math

● Numbers aren't so useful without Math
– usual arithmetic is available: most operators similar

to Java
● +, - , /, *, %

– note that / will return a value of the type to the left of the operator
like in Java

● 10/3 -> 3
● 10.0/3 -> 3.33333333333333

● ** is new x**y raises x to the yth power
– 2**4 ->16

Strings

● Objects like in Java/Python
– like python, different ways of deliminating strings

● use the one that won't appear in a string
– x = 'she said “this is it!” yesterday'
– y = “I won't go back!”
– use %q to make up your own deliminator

● a = %q# this is %^*&^%$* I tell you#

– string concatenation
● use '+' as in Java
● will concatenate two strings into one

– but not other types as in Java

Some simple string operations

● Strings support several operators that look like
logic/math
– string * number

● returns string repeated number times
● “this “ * 3 returns “this this this “

– comparisons
● string1 > string2
● returns true iff string1 comes alphabetically after string2

–

Objects and Methods

● Now we've covered the “basic types” from
c/Java (sorta)
– But since everything in Ruby is an object, you

should be able to call a method on everything right?

– yup and to call a method
● use object.methodname notation as with Java or c++

– but there the analogy breaks down

