

Python

Being a brief introduction to the python language
for computer scientists with a familiarity with

another programming language.

Python

● python is an interpreted language
– like lisp

– with text processing capabilities and a more free for
all approach

● it can be object oriented, but doesn't have to be.
● it can be entered in a script file, or at the interpreter etc.
● can have methods/functions, but can execute simple

statements as well.
● dynamic typing.

– vars are the type of the value you assign to them, no need to
declare before assigning value.

– part of the growing trend of new languages looking
to be the “next thing” along with ruby and the like.

Hello World

● Hello world in python
– mystring = 'hello world'

– print mystring

● thats it
– not bad

– Note no { or } or ;

– white space is used for separators and scoping.

Running python

● On eagle/csdev01
– you'll get accounts

– type python at command line to bring you to the
interactive prompt.

– type
● python <file>
● with <file> replaced by your python file to run a python

program from your file.
● python programs traditionally have the suffix .py on them.

Python Output

● print statement
– note statement not function

– can print a plain string (using “string” or 'string')

– or a formatted string

● format operator %
– syntax:

● <format string> % (<arg1>, <arg2>, ...)
● take the same format commands at c printf
● %s string, %d integer, %f floating point etc.

program input.

● easiest way to get command line input is to use
the function raw_input

● syntax
– raw_input('prompt')

● where prompt is replaced by any prompt string.
● the function returns a string.
● you can convert a string to a number by using the int()

method

– inputstr = raw_input('gimme input:')

– inputstr is now available for the program to use.

comments

● # is the line comment character
– everything from # to the end of the line is a

comment

● documentation comments also possible
– when declaring a function (to be discussed) if the

first thing is a string, it is considered a comment.

Math operators

● Standard operators with a couple of new things
– +, -, *, /

● subtraction, addition, multiplication and floating point
division

– //
● 'floor division' returns an integer w/out remainder

– ** exponent : 5**3 is 125

logical operators

● the usual logical operators for c/java like
languages are available
– >, <, >=, <=, ==, !=

● also legacy <>
– pascal style not equal, being phased out.

functions in python

● functions need to be declared before used.
● declare using

– def <functionName>([arguments]) :
● “optional doc string”
● <function body.>

– where functionName is a valid identifier for the
function

– arguments is an optional list of arguments (thus the
brackets)

– notice the indenting in the lines following the def
line – that matters!!

functions in python II

● no need to specify return type
– to return a value,

● use return keyword followed by a value

– if you don't explicitly return a value
● none is returned
● none is the python keyword equivalent to null in c++/Java

● example
– def getInput(prompt):

– inputstr = raw_input(prompt)

– return inputstr

call functions

● No static typing even on parameters,
– pass what you want, run time error rather than

syntax error if you pass a value the function can't
handle.

● myInput = getInput(“tell me what you want : ”)

Identifiers

● Same rules as in Java/C++
● any letters, numbers and _
● number can't come first
● case matters.

variables

● dynamically typed language, define and type
variables when you initialize it with a value.
– str = getInput("show me show me show me: ")

– print str

– str = 3

– print str

– output
● show me show me show me: this and that
● this and that
● 3

Variable assignment and updating

● use = for variable assignment
– like c/java

– augmented assignment available

– n=10

– n = n*10 is same as n*= 10

– but no ++ and -- – like in c/java
● unary operators – --n is same as -(-n) aka n

Strings

● string:
– sequence of characters inside of ' ' or “ “

– triple quotes ''' ''' ore “”” “”” are for strings with special
characters in them

– var = ''' this is a
 string with a newline in it '''

– str = “string”

● use len() function to find number of chars in string
– len(str) will return 6

string operators

● two most common operators
– index [] and slice [:] operators

– want a character from a string use the index (like an
array in c/java)

● str = 'string'
● str[1] will return t

– strings and other collections zero based in python

– slice [begin:end] (if either is omitted goes to the end)
● from beginning upto but not including end
● str[1:4] returns tri
● str[3:] returns ing
● str[:3] returns str

conditional

● conditional in python, like others is if
– syntax:

● if expression:
– if_block

– if the expression evaluates to True or non-zero,
if_block will be executed. if expression evaluates to
False or 0, then if_block will not be executed.

– if_block is a series of statements indented one
indent greater than the if expression.

– optional else: after if_block or elif

– see example in two slides

String membership

● Want to check to see if there is a substring in
an input string
– use in operator

– str='example'

– 'am' in str returns True

● not in also available

– 'good' not in 'evil' returns true.

putting some together

● a function with conditionals and strings
– def really(input):

– if 'mother' in input:

– print "tell me about your mother"

– else:

– print "oh really"

● calling that function
– chat = getInput("tell me about whats bothering you:")

– really(chat)

indefinite loops

● for indefinite loops
– while same as c/java

– syntax
● while expression :

while_body

– this will execute all the lines of while_body until
expression evaluates to 0 or False

● for loops exist, but are different in python than
in java/c

Very basic syntax

● Thats the most basic python syntax
● now lets learn a little about classes and some

common support functions and libraries

