
  

Up and Coming programming 
languages

What do we need today?



  

Focusing our scrutiny

● As we begin our examination of python and 
ruby, need to consider:
– what have we needed in a programming language 

in the past?

– What do we need today?

– What will we need in near future?



  

Programming

● Theory of computation
– Turing Equivalence

– general purpose programming languages all have
● loops, conditionals, variables 
● others can be built out of those.

● but theoretical equivalence is not everything
– want to program a turing machine anyone?

– languages with best syntax  



  

Old School programming needs

● In 50-60s 
– needed to speed numeric/scientific math 

calculations (matrix arithmetic etc)
● fortran

– Automate business functions
● cobol

– OS is in assembly

● through 70s
– symbolic AI

● lisp has large minority following for 30+ years



  

More recently

● 1970s-early '80s
– rise of minicomputer (server class today)

– networking for universities and large companies

– lots of hardware to be managed

– C programming language makes its mark
● os programming and lots of newer programs.

– early '80s need simple language for computers with 
no power

● BASIC



  

Late 80s – 90s PL trends.

● personal computers
– more and more memory, more and more complexity

– bigger, more resource intensive programs

– big, capable, object oriented programming 
languages

– C++, Java become kings



  

And today

● What are the emerging trends driving software 
design and programming?
– web 2.0 (computing over the network)

– multi-core/processing machines

– cheap, pervasive 3-d graphics.
● more than just games 

– quick turn around development

– Ease of use/learning

– What else?



  

the criteria established

● As we examine these languages,
– criteria established – how do the languages 

measure up?



Good enough for day 1

● Thats probably good for the first day
– read through chapter 1 of the ruby book 
– and chapters one and two of the python book for 

your assignment


