
Stuffing AI into our programs

 2

Admin

● Any Questions on project1 sprint
2?

● Faculty Hiring: We want your
feedback
– Each comp490 section will have

one candidate
● T/R 11: Thursday Feb19
● T/R 12:30: Tuesday Feb 17
● M/W 12:20: Mon Feb 23

– Cyber faculty candidates coming
soon

● Assignment for the “stepping into
the industry” portion of class:
– The programming podcast from

Sept 11, 2025 “The BIGGEST
Reason Some Devs Get More
Interviews Than Others”

– https://www.youtube.com/watch?v=_LOz3YBm73A

– https://creators.spotify.com/pod/profile/the-programming-podcast/episod
es/The-BIGGEST-Reason-Some-Devs-Get-More-Interviews-Than-Other
s-e382v6r

– etc

https://www.youtube.com/watch?v=_LOz3YBm73A
https://creators.spotify.com/pod/profile/the-programming-podcast/episodes/The-BIGGEST-Reason-Some-Devs-Get-More-Interviews-Than-Others-e382v6r
https://creators.spotify.com/pod/profile/the-programming-podcast/episodes/The-BIGGEST-Reason-Some-Devs-Get-More-Interviews-Than-Others-e382v6r
https://creators.spotify.com/pod/profile/the-programming-podcast/episodes/The-BIGGEST-Reason-Some-Devs-Get-More-Interviews-Than-Others-e382v6r

 3

AI

● What is ‘AI’?

 4

AI

● What is ‘AI’?
– “Artificial intelligence refers to computer systems that can

perform complex tasks normally done by human-reasoning”
– Source NASA (

https://www.nasa.gov/what-is-artificial-intelligence/) 2926
– Self defeating definition, but the best/ most common one I’ve

seen over decades

https://www.nasa.gov/what-is-artificial-intelligence/

 5

LLM
● What is an LLM? (Large Language Model)

 6

LLM
● What is an LLM? (Large Language Model)

– (I’m sure Dr. Kumari would scold me for over simplification)
– A supervised deep learning model based on neural networks that ingests

huge amounts of data to train (and has a *lot* of nodes)
– Finds patterns in the very large piles of input data

 7

Generative AI
● What is ‘Generative AI’?

 8

Generative AI
● What is ‘Generative AI’?
● An AI system (pretty much all LLMs in the mid 2020s) which can

generate novel output* based on a prompt and the patterns it has
learned in training.
– The ever increasing prompt is often called the ‘context’

 * for certain definitions of novel output

 9

Generative AI

● What are some of the positive capabilities of Gen-AI in the 2020s?
– At least things it can do well, even if you don’t think it is a benefit to

society

● What are some of the knocks on Gen-AI?
– Particularly things it does famously poorly/improperly

 10

Generative AI

● What are some of the positive capabilities of Gen-AI in the 2020s?
– At least things it can do well, even if you don’t think it is a benefit to

society
● I look forward to what each class has to say, because there are a lot of things

here

● What are some of the knocks on Gen-AI?
– Particularly things it does famously poorly/improperly

● There are a lot of things here too but I particularly want to talk about
“Hallucinations”

 11

AI ‘Hallucinations’
● What are AI ‘Hallucinations’?

 12

AI ‘Hallucinations’
● What are AI ‘Hallucinations’?

– These generative AIs just statistically generation the most likely outcome
based on the patterns it found in input data

– Famous first published case of AI Hallucinations
● “list 7 law professors accused of sexual harassment”
● When the model didn’t have 7, it just added some famous law professors names ot the

list back in 2023
– Note the reference to 2018 news articles

● https://www.firstpost.com/world/chatgpt-makes-up-a-sexual-harassment-scandal-name
s-real-professor-as-accused-12418552.html

● I’m sure they fixed it right?
– https://www.spotlightpa.org/news/2026/01/pennsylvania-commonwealth-court-ai-hallucinations-alle

gations-justice-system/

– How about in our field of software dev?

https://www.firstpost.com/world/chatgpt-makes-up-a-sexual-harassment-scandal-names-real-professor-as-accused-12418552.html
https://www.firstpost.com/world/chatgpt-makes-up-a-sexual-harassment-scandal-names-real-professor-as-accused-12418552.html
https://www.spotlightpa.org/news/2026/01/pennsylvania-commonwealth-court-ai-hallucinations-allegations-justice-system/
https://www.spotlightpa.org/news/2026/01/pennsylvania-commonwealth-court-ai-hallucinations-allegations-justice-system/

 13

AI Software Hallucinations
● What format do AI software hallucinations take?
● What are the outcomes?

 14

AI Software Hallucinations
● What format do AI software hallucinations take?

– Methods in libraries that don’t exist
● (though similarly named might exist in other libraries)

– My personal annoyance
● Methods that used to exist but were deprecated an removed
● But training data is forever

● What are the outcomes?
– Code that won’t compile/run
– Or crashes.

 15

RAG
● What is RAG (Retrieval Augmented Generation)?
● And how does it help us avoid Hallucinations?

 16

RAG
● What is RAG (Retrieval Augmented Generation)?

– Allows LLM access to existing documents/data and adds (some of) the
information to the prompt context.

● And how does it help us avoid Hallucinations?
– If we feed the docs for a library into the model as context, much less likely to

invent functions based on similar libraries.
– Examples fed in help generate good code for library use

● Or API use.

– Models are trained on the data available back in training, RAG can add
current data to adjust output.

● Others that you all came up with?

 17

Agentic AI

● So finally, what is Agentic AI?

 18

Agentic AI

● So finally, what is Agentic AI?
– AI that can actually ‘do stuff’ rather than exist as a disembodied responder.
– In current incarnations this is usually a program which uses LLMs and has

access to some functions/programs that it can run.
● Two most common approaches for providing this functionality in 2026:

– MCP [Model Context Protocol] servers (originally OpenAI invention)
– Skills (originally Anthropic [Claude/Claude code] innovation)

– We’ve built some skills as functions – but what kind of programs might we
want to run?

● Lucky volunteer?

 19

Agentic AI
● So finally, what is Agentic AI?

– AI that can actually ‘do stuff’ rather than exist as a disembodied responder.
– In current incarnations this is usually a program which uses LLMs and has

access to some functions/programs that it can run.
● Two most common approaches for providing this functionality in 2026:

– MCP [Model Context Protocol] servers (originally OpenAI invention)
– Skills (originally Anthropic [Claude/Claude code] innovation)

– We’ve built some skills as functions – but what kind of programs might we
want to run?

● compiler/interpreter for language
● Linters
● Both help keep agentic AI from producing hallucinated buggy code.

– Because can re-invoke LLM if the compile fails.

 20

Building Agentic AI
● There are several libraries to help build Agentic AI

– But at the moment the one with the most mindshare is langchain
● No guarantee that will still be the same in 6-9 months

– Langchain (https://docs.langchain.com/)
● Originally written for python and javascript

– Offers first party support for these languages

● Ports for other languages available
– Langchain4j (https://github.com/langchain4j/langchain4j) brings langchain to java (and kotlin)

● Decent tutoral for Java https://www.baeldung.com/java-langchain-basics
– Langchaingo (https://github.com/tmc/langchaingo) golang
– After this it gets a little less well supported
– https://github.com/tryAGI/LangChain community port for C#
– https://github.com/Abraxas-365/langchain-rust community port for rust
– https://pub.dev/packages/langchain community port for dart

https://docs.langchain.com/
https://github.com/langchain4j/langchain4j
https://www.baeldung.com/java-langchain-basics
https://github.com/tmc/langchaingo
https://github.com/tryAGI/LangChain
https://github.com/Abraxas-365/langchain-rust
https://pub.dev/packages/langchain

 21

LangChain Basic Idea
● Langchain built on langgraph

– Build Finite State Machine to determine LLM calls and inputs
– For example in this image from the official docs (

https://docs.langchain.com/oss/python/langgraph/workflows-agents)
–

–

https://docs.langchain.com/oss/python/langgraph/workflows-agents

 22

LLM System

● Langchain can work with a variety
of LLM setups
– OpenAI
– Gemini
– Antropic Claude
– Ollama

● What is Ollama?

 23

LLM System

● Langchain can work with a variety
of LLM setups
– OpenAI
– Gemini
– Antropic Claude
– Ollama

● What is Ollama?
– A command line system for

running LLM/AI models.
● Runs them locally

– A competitor of LMstudio
–

 24

Ollama
● Ollama

– a command line LMM runner
● Still need to get a model

● ollama pull <model name>

● I tried

● llama3:8b (doesn’t support tools)

● And

● qwen3:30b-a3b

● While prepping for this discussion

● Also tried

– Mistral

– granite4:1b # I had really good luck with
this one after my Tuesday demo

● Once downloaded, load an LLM
by:
– ollama run <model name>

● Then check which one is running
by
– ollama ps

● And find out which models are
downloaded

– ollama list

● By Default ollama runs server

 http://localhost:11434

 25

Ollama with agent
● Very simple example – let’s look, dissect and discuss

from langchain_ollama import ChatOllama

OLLAMA_MODEL = "qwen3:30b-a3b"
OLLAMA_BASE_URL = "http://localhost:11434" # Default Ollama URL

--- 1. Set up the LLM ---
agent = ChatOllama(model=OLLAMA_MODEL, base_url=OLLAMA_BASE_URL, temperature=0) # Set temperature to
0 for replicable results, to 1 for ‘creative’ results

Run the agent
result = agent.invoke(
 [("system", "You are a helpful assistant that can answer questions about programming languages."),
 ("human", "Tell me about the haskell programming language.")
]
)
print(result)
print("Done!")

● Initial reference: https://docs.langchain.com/oss/python/integrations/chat/ollama

https://docs.langchain.com/oss/python/integrations/chat/ollama

 26

Ollama with tools
from typing import List

from langchain.messages import AIMessage
from langchain.tools import tool
from langchain_ollama import ChatOllama

@tool
def validate_user(user_id: int, addresses: List[str]) -> bool:
 """Validate user using historical addresses.

 Args:
 user_id (int): the user ID.
 addresses (List[str]): Previous addresses as a list of strings.
 """
 return True

● llm = ChatOllama(

 model="qwen3:30b-a3b",
 validate_model_on_init=True,
 temperature=0,
).bind_tools([validate_user])

result = llm.invoke(
 "Could you validate user 123? They previously lived at "
 "123 Fake St in Boston MA and 234 Pretend Boulevard in
"
 "Houston TX."
)

print(result)
if isinstance(result, AIMessage) and result.tool_calls:
 print(result.tool_calls)

From docs: https://docs.langchain.com/oss/python/integrations/chat/ollama scrolls down to ‘tool
calling’

@tool makes a function a tool for AI

The docstring lets the LLM know how
to use it

https://docs.langchain.com/oss/python/integrations/chat/ollama

 27

Ollama with Baby Tools Part 2

from langchain.agents import create_agent
from langchain_core.messages import HumanMessage
from langchain_ollama import ChatOllama

Step 1: Define a tool
def get_weather(city: str) -> str:
 """Get weather for a given city."""
 return f"It's always sunny in {city}!"

Step 2 & 3: Instantiate a model and create the agent
llm = ChatOllama(
 model="qwen3:30b-a3b",
 validate_model_on_init=True,
 temperature=0,
)
agent = create_agent(
 model=llm,
 tools=[get_weather],
 system_prompt="You are a helpful assistant that can check the weather.",
)

Step 4: Invoke the agent
user_input = {"messages": [HumanMessage(content="What is the weather in San
Francisco?")]}
response = agent.invoke(user_input)

for item in response.get("messages", []):
 print(
 item.content
)

● Here is the typical toy example
from the docs
– Eg:

https://docs.langchain.com/oss/pyt
hon/langchain/quickstart

● But ported to ollama
– Let’s try it.

https://docs.langchain.com/oss/python/langchain/quickstart
https://docs.langchain.com/oss/python/langchain/quickstart

 28

Now lets do something more real

● Here is our example Tool function
import requests
from langchain.tools import tool

@tool
def get_university_data(Name:str)->list[dict]:
 """
 Returns a list of dictionaries containing data about universities with the given
name
 this is a sample dictionary {'state-province': None, 'web_pages':
['http://www.byu.edu/'], 'name': 'Brigham Young University', 'domains': ['byu.edu'],
'country': 'United States', 'alpha_two_code': 'US'}
 Expects part of the university name as an input
 """
 url = f"http://universities.hipolabs.com/search?name={Name}"
 response = requests.get(url)
 if response.status_code == 200:
 return response.json()
 else:
 return []

● This is a lot like your
functions
– Except that it uses the

university API
– Note the addition of the

@tool decorator

 29

Using a real tool – simplest example
from AgentSkills import get_university_data
from langchain_ollama.chat_models import ChatOllama
from langchain_core.prompts import PromptTemplate
from langchain.agents import create_agent

#first built from https://github.com/saurav-samantray/ollama-llm-rag-tools-
example/
OLLAMA_MODEL = "qwen3:30b-a3b"
OLLAMA_BASE_URL = "http://localhost:11434" # Default Ollama URL

print(f"Using Ollama model: {OLLAMA_MODEL}")
print("-" * 30)

--- 1. Set up the LLM ---
llm = ChatOllama(model=OLLAMA_MODEL, base_url=OLLAMA_BASE_URL,
temperature=0) # Set temperature to 0 for consistent results, 1==creative
print("LLM Initialized.")

tools =[get_university_data]

●

agent = create_agent(llm, tools)
print("Agent Created.")
query = "What country is Young located in?"
for event in agent.stream(
 {"messages": [{"role": "user", "content": query}]},
 stream_mode="values",
):
 event["messages"][-1].pretty_print()

● Get the example to try it yourself

● https://github.com/jsantore/SimpleAgentToolDemo

https://github.com/jsantore/SimpleAgentToolDemo

 30

Putting it together

● Now lets put this together with the
voice stuff from sprint1
– Here is the essence setup as

functions

OLLAMA_MODEL = "granite4:1b"
OLLAMA_BASE_URL = "http://localhost:11434" # Default Ollama URL

def process_voice_prompt(agent:CompiledStateGraph, prompt:str)->None:
 for event in agent.stream(
 {"messages": [{"role": "user", "content": prompt}]},
 stream_mode="values",
):
 event["messages"][-1].pretty_print()

def setup_agent()-> CompiledStateGraph:
 llm = ChatOllama(model=OLLAMA_MODEL, base_url=OLLAMA_BASE_URL,
temperature=0) # Set temperature to 0
 print("LLM Initialized.")
 tools =[get_university_data]
 agent = create_agent(llm, tools)
 print("Agent Created.")
 return agent

if __name__ == "__main__":
 agent = setup_agent()
 setup_recognizer()
 start_recognizer(agent)

 31

Putting it together II
voice_stream = None
pyaudioObj = None
recongnizer = None

def get_transcript(audio_data) -> str:
 if recongnizer.AcceptWaveform(audio_data):
 result = json.loads(recongnizer.Result())
 recognized_text = result["text"]
 if "terminate" in recognized_text.lower():
 print("Termination keyword detected. Stopping...")
 clean_up()
 else:
 return recognized_text
 else:
 return ""

def setup_recognizer(from_mic: bool = True):
 global voice_stream, pyaudioObj, recongnizer
 model = vosk.Model("vosk-model-en-us-0.22-lgraph")
 recongnizer = vosk.KaldiRecognizer(model, 16000)
 pyaudioObj = pyaudio.PyAudio()
 if from_mic:
 voice_stream = pyaudioObj.open(
 format=pyaudio.paInt16,
 channels=1,
 rate=16000,
 input=True,
 frames_per_buffer=8192,
)
 print("Listening for speech. Say 'Terminate' to stop.")

def start_recognizer(agent:CompiledStateGraph):
 while True:
 data = voice_stream.read(8192)
 text = get_transcript(data)
 if text:
 process_voice_prompt(agent, text)

● This is in my voice.py file
– Calls process_voice_prompt

from previous slide
– Let’s try it out.

 32

Embeddings
● What are ‘embeddings’ in the LLM sense?

–

 33

Embeddings
● What are ‘embeddings’ in the LLM sense?

– When we read in a document and run it through a vector database to find
meaning similarities

– Then mark up the document with numeric representations
– Should allow documents to be searched by ‘meaning’ rather than keyword.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

