
Stuffing AI into our programs
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Admin

● Any Questions on project1 sprint 
2?

● Faculty Hiring: We want your 
feedback
– Each comp490 section will have 

one candidate
● T/R 11: Thursday Feb19
● T/R 12:30: Tuesday Feb 17
● M/W 12:20: Mon Feb 23

– Cyber faculty candidates coming 
soon

● Assignment for the “stepping into 
the industry” portion of class:
– The programming podcast from 

Sept 11, 2025 “The BIGGEST 
Reason Some Devs Get More 
Interviews Than Others”

– https://www.youtube.com/watch?v=_LOz3YBm73A

– https://creators.spotify.com/pod/profile/the-programming-podcast/episod
es/The-BIGGEST-Reason-Some-Devs-Get-More-Interviews-Than-Other
s-e382v6r
 

– etc

https://www.youtube.com/watch?v=_LOz3YBm73A
https://creators.spotify.com/pod/profile/the-programming-podcast/episodes/The-BIGGEST-Reason-Some-Devs-Get-More-Interviews-Than-Others-e382v6r
https://creators.spotify.com/pod/profile/the-programming-podcast/episodes/The-BIGGEST-Reason-Some-Devs-Get-More-Interviews-Than-Others-e382v6r
https://creators.spotify.com/pod/profile/the-programming-podcast/episodes/The-BIGGEST-Reason-Some-Devs-Get-More-Interviews-Than-Others-e382v6r
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AI

● What is ‘AI’?
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AI

● What is ‘AI’?
– “Artificial intelligence refers to computer systems that can 

perform complex tasks normally done by human-reasoning”
– Source NASA (

https://www.nasa.gov/what-is-artificial-intelligence/) 2926
– Self defeating definition, but the best/ most common one I’ve 

seen over decades

https://www.nasa.gov/what-is-artificial-intelligence/
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LLM
● What is an LLM? (Large Language Model)
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LLM
● What is an LLM? (Large Language Model)

– (I’m sure Dr. Kumari would scold me for over simplification) 
– A supervised deep learning model based on neural networks that ingests 

huge amounts of data to train (and has a *lot* of nodes)
– Finds patterns in the very large piles of input data
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Generative AI
● What is ‘Generative AI’?
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Generative AI
● What is ‘Generative AI’?
● An AI system (pretty much all LLMs in the mid 2020s) which can 

generate novel output* based on a prompt and the patterns it has 
learned in training.
– The ever increasing prompt is often called the ‘context’

 * for certain definitions of novel output 
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Generative AI

● What are some of the positive capabilities of Gen-AI in the 2020s?
– At least things it can do well, even if you don’t think it is a benefit to 

society

● What are some of the knocks on Gen-AI?
– Particularly things it does famously poorly/improperly 
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Generative AI

● What are some of the positive capabilities of Gen-AI in the 2020s?
– At least things it can do well, even if you don’t think it is a benefit to 

society
● I look forward to what each class has to say, because there are a lot of things 

here

● What are some of the knocks on Gen-AI?
– Particularly things it does famously poorly/improperly

● There are a lot of things here too but I particularly want to talk about 
“Hallucinations”  
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AI ‘Hallucinations’
● What are AI ‘Hallucinations’?
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AI ‘Hallucinations’
● What are AI ‘Hallucinations’?

– These generative AIs just statistically generation the most likely outcome 
based on the patterns it found in input data

– Famous first published case of AI Hallucinations 
● “list 7 law professors accused of sexual harassment” 
● When the model didn’t have 7, it just added some famous law professors names ot the 

list back in 2023
– Note the reference to 2018 news articles 

● https://www.firstpost.com/world/chatgpt-makes-up-a-sexual-harassment-scandal-name
s-real-professor-as-accused-12418552.html
 

● I’m sure they fixed it right?
– https://www.spotlightpa.org/news/2026/01/pennsylvania-commonwealth-court-ai-hallucinations-alle

gations-justice-system/
 

– How about in our field of software dev?

https://www.firstpost.com/world/chatgpt-makes-up-a-sexual-harassment-scandal-names-real-professor-as-accused-12418552.html
https://www.firstpost.com/world/chatgpt-makes-up-a-sexual-harassment-scandal-names-real-professor-as-accused-12418552.html
https://www.spotlightpa.org/news/2026/01/pennsylvania-commonwealth-court-ai-hallucinations-allegations-justice-system/
https://www.spotlightpa.org/news/2026/01/pennsylvania-commonwealth-court-ai-hallucinations-allegations-justice-system/
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AI Software Hallucinations
● What format do AI software hallucinations take?
● What are the outcomes?
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AI Software Hallucinations
● What format do AI software hallucinations take?

– Methods in libraries that don’t exist 
● (though similarly named might exist in other libraries)

– My personal annoyance
● Methods that used to exist but were deprecated an removed
● But training data is forever

● What are the outcomes?
– Code that won’t compile/run
– Or crashes.
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RAG
● What is RAG (Retrieval Augmented Generation)?
● And how does it help us avoid Hallucinations?



  16

RAG
● What is RAG (Retrieval Augmented Generation)?

– Allows LLM access to existing documents/data and adds (some of) the 
information to the prompt context.

● And how does it help us avoid Hallucinations?
– If we feed the docs for a library into the model as context, much less likely to 

invent functions based on similar libraries.
– Examples fed in help generate good code for library use

● Or API use.

– Models are trained on the data available back in training, RAG can add 
current data to adjust output.

● Others that you all came up with?
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Agentic AI

● So finally, what is Agentic AI?
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Agentic AI

● So finally, what is Agentic AI?
– AI that can actually ‘do stuff’ rather than exist as a disembodied responder.
– In current incarnations this is usually a program which uses LLMs and has 

access to some functions/programs that it can run.
● Two most common approaches for providing this functionality in 2026:

– MCP [Model Context Protocol] servers (originally OpenAI invention)
– Skills (originally Anthropic [Claude/Claude code] innovation)

– We’ve built some skills as functions – but what kind of programs might we 
want to run?

● Lucky volunteer?
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Agentic AI
● So finally, what is Agentic AI?

– AI that can actually ‘do stuff’ rather than exist as a disembodied responder.
– In current incarnations this is usually a program which uses LLMs and has 

access to some functions/programs that it can run.
● Two most common approaches for providing this functionality in 2026:

– MCP [Model Context Protocol] servers (originally OpenAI invention)
– Skills (originally Anthropic [Claude/Claude code] innovation)

– We’ve built some skills as functions – but what kind of programs might we 
want to run?

● compiler/interpreter for language
● Linters
● Both help keep agentic AI from producing hallucinated buggy code.

– Because can re-invoke LLM if the compile fails.
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Building Agentic AI
● There are several libraries to help build Agentic AI

– But at the moment the one with the most mindshare is langchain
● No guarantee that will still be the same in 6-9 months

– Langchain (https://docs.langchain.com/)
● Originally written for python and javascript

– Offers first party support for these languages

● Ports for other languages available
– Langchain4j (https://github.com/langchain4j/langchain4j) brings langchain to java (and kotlin)

● Decent tutoral for Java https://www.baeldung.com/java-langchain-basics 
– Langchaingo (https://github.com/tmc/langchaingo) golang
– After this it gets a little less well supported
– https://github.com/tryAGI/LangChain community port for C#
– https://github.com/Abraxas-365/langchain-rust community port for rust
– https://pub.dev/packages/langchain community port for dart

https://docs.langchain.com/
https://github.com/langchain4j/langchain4j
https://www.baeldung.com/java-langchain-basics
https://github.com/tmc/langchaingo
https://github.com/tryAGI/LangChain
https://github.com/Abraxas-365/langchain-rust
https://pub.dev/packages/langchain
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LangChain Basic Idea
● Langchain built on langgraph

– Build Finite State Machine to determine LLM calls and inputs
– For example in this image from the official docs (

https://docs.langchain.com/oss/python/langgraph/workflows-agents )
–

–

https://docs.langchain.com/oss/python/langgraph/workflows-agents
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LLM System

● Langchain can work with a variety 
of LLM setups
– OpenAI
– Gemini
– Antropic Claude
– Ollama

● What is Ollama?
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LLM System

● Langchain can work with a variety 
of LLM setups
– OpenAI
– Gemini
– Antropic Claude
– Ollama

● What is Ollama?
– A command line system for 

running LLM/AI models.
● Runs them locally

– A competitor of LMstudio
–
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Ollama
● Ollama

– a command line LMM runner
● Still need to get a model

● ollama pull <model name>

● I tried 

● llama3:8b   (doesn’t support tools)

● And 

● qwen3:30b-a3b

● While prepping for this discussion

● Also tried 

– Mistral

– granite4:1b # I had really good luck with 
this one after my Tuesday demo

● Once downloaded, load an LLM 
by:
– ollama run <model name>

● Then check which one is running 
by
– ollama ps

● And find out which models are 
downloaded

– ollama list

● By Default ollama runs server

            http://localhost:11434
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Ollama with agent
● Very simple example – let’s look, dissect and discuss

from langchain_ollama import ChatOllama

OLLAMA_MODEL = "qwen3:30b-a3b"
OLLAMA_BASE_URL = "http://localhost:11434" # Default Ollama URL

# --- 1. Set up the LLM ---
agent = ChatOllama(model=OLLAMA_MODEL, base_url=OLLAMA_BASE_URL, temperature=0) # Set temperature to 
0 for replicable results, to 1 for ‘creative’ results

# Run the agent
result = agent.invoke(
  [  ("system", "You are a helpful assistant that can answer questions about programming languages."),
     ("human", "Tell me about the haskell programming language.")
    ]
)
print(result) 
print("Done!")

● Initial reference: https://docs.langchain.com/oss/python/integrations/chat/ollama

https://docs.langchain.com/oss/python/integrations/chat/ollama
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Ollama with tools
from typing import List

from langchain.messages import AIMessage
from langchain.tools import tool
from langchain_ollama import ChatOllama

@tool
def validate_user(user_id: int, addresses: List[str]) -> bool:
    """Validate user using historical addresses.

    Args:
        user_id (int): the user ID.
        addresses (List[str]): Previous addresses as a list of strings.
    """
    return True

● llm = ChatOllama(   

 model="qwen3:30b-a3b",
    validate_model_on_init=True,
    temperature=0,
).bind_tools([validate_user])

result = llm.invoke(
    "Could you validate user 123? They previously lived at "
    "123 Fake St in Boston MA and 234 Pretend Boulevard in 
"
    "Houston TX."
)

print(result)
if isinstance(result, AIMessage) and result.tool_calls:
    print(result.tool_calls)

From docs: https://docs.langchain.com/oss/python/integrations/chat/ollama scrolls down to ‘tool 
calling’

@tool makes a function a tool for AI

The docstring lets the LLM know how 
to use it

https://docs.langchain.com/oss/python/integrations/chat/ollama
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Ollama with Baby Tools Part 2

from langchain.agents import create_agent
from langchain_core.messages import HumanMessage
from langchain_ollama import ChatOllama

# Step 1: Define a tool
def get_weather(city: str) -> str:
    """Get weather for a given city."""
    return f"It's always sunny in {city}!"

# Step 2 & 3: Instantiate a model and create the agent
llm = ChatOllama(
    model="qwen3:30b-a3b",
    validate_model_on_init=True,
    temperature=0,
)
agent = create_agent(
    model=llm,
    tools=[get_weather],
    system_prompt="You are a helpful assistant that can check the weather.",
)

# Step 4: Invoke the agent
user_input = {"messages": [HumanMessage(content="What is the weather in San 
Francisco?")]}
response = agent.invoke(user_input)

for item in response.get("messages", []):
    print(
        item.content
    )

● Here is the typical toy example 
from the docs 
– Eg: 

https://docs.langchain.com/oss/pyt
hon/langchain/quickstart
 

● But ported to ollama
– Let’s try it.

https://docs.langchain.com/oss/python/langchain/quickstart
https://docs.langchain.com/oss/python/langchain/quickstart
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Now lets do something more real

● Here is our example Tool function
import requests
from langchain.tools import tool

@tool
def get_university_data(Name:str)->list[dict]:
    """
    Returns a list of dictionaries containing data about universities with the given 
name
    this is a sample dictionary {'state-province': None, 'web_pages': 
['http://www.byu.edu/'], 'name': 'Brigham Young University', 'domains': ['byu.edu'], 
'country': 'United States', 'alpha_two_code': 'US'}
    Expects part of the university name as an input
    """
    url = f"http://universities.hipolabs.com/search?name={Name}"
    response = requests.get(url)
    if response.status_code == 200:
        return response.json()
    else:
        return []

● This is a lot like your 
functions
– Except that it uses the 

university API
– Note the addition of the 

@tool decorator
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Using a real tool – simplest example
from AgentSkills import get_university_data
from langchain_ollama.chat_models import ChatOllama
from langchain_core.prompts import PromptTemplate
from langchain.agents import  create_agent

#first built from  https://github.com/saurav-samantray/ollama-llm-rag-tools-
example/
OLLAMA_MODEL = "qwen3:30b-a3b"
OLLAMA_BASE_URL = "http://localhost:11434" # Default Ollama URL

print(f"Using Ollama model: {OLLAMA_MODEL}")
print("-" * 30)

# --- 1. Set up the LLM ---
llm = ChatOllama(model=OLLAMA_MODEL, base_url=OLLAMA_BASE_URL, 
temperature=0) # Set temperature to 0 for consistent results, 1==creative
print("LLM Initialized.")

tools =[get_university_data]

●

agent = create_agent(llm, tools)
print("Agent Created.")
query = "What country is Young located in?"
for event in agent.stream(
        {"messages": [{"role": "user", "content": query}]},
        stream_mode="values",
):
    event["messages"][-1].pretty_print()

● Get the example to try it yourself

● https://github.com/jsantore/SimpleAgentToolDemo 

https://github.com/jsantore/SimpleAgentToolDemo
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Putting it together

● Now lets put this together with the 
voice stuff from sprint1
– Here is the essence setup as 

functions

OLLAMA_MODEL = "granite4:1b"
OLLAMA_BASE_URL = "http://localhost:11434" # Default Ollama URL

def process_voice_prompt(agent:CompiledStateGraph, prompt:str)->None:
    for event in agent.stream(
            {"messages": [{"role": "user", "content": prompt}]},
            stream_mode="values",
    ):
        event["messages"][-1].pretty_print()

def setup_agent()-> CompiledStateGraph:
    llm = ChatOllama(model=OLLAMA_MODEL, base_url=OLLAMA_BASE_URL, 
temperature=0) # Set temperature to 0
    print("LLM Initialized.")
    tools =[get_university_data]
    agent = create_agent(llm, tools)
    print("Agent Created.")
    return agent

if __name__ == "__main__":
    agent = setup_agent()
    setup_recognizer()
    start_recognizer(agent)
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Putting it together II
voice_stream = None
pyaudioObj = None
recongnizer = None

def get_transcript(audio_data) -> str:
    if recongnizer.AcceptWaveform(audio_data):
        result = json.loads(recongnizer.Result())
        recognized_text = result["text"]
        if "terminate" in recognized_text.lower():
            print("Termination keyword detected. Stopping...")
            clean_up()
        else:
            return recognized_text
    else:
        return ""

def setup_recognizer(from_mic: bool = True):
    global voice_stream, pyaudioObj, recongnizer
    model = vosk.Model("vosk-model-en-us-0.22-lgraph")
    recongnizer = vosk.KaldiRecognizer(model, 16000)
    pyaudioObj = pyaudio.PyAudio()
    if from_mic:
        voice_stream = pyaudioObj.open(
            format=pyaudio.paInt16,
            channels=1,
            rate=16000,
            input=True,
            frames_per_buffer=8192,
        )
    print("Listening for speech. Say 'Terminate' to stop.")

def start_recognizer(agent:CompiledStateGraph):
    while True:
        data = voice_stream.read(8192)
        text = get_transcript(data)
        if text:
            process_voice_prompt(agent, text)

● This is in my voice.py file
– Calls process_voice_prompt 

from previous slide
– Let’s try it out.
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Embeddings
● What are ‘embeddings’ in the LLM sense?

–
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Embeddings
● What are ‘embeddings’ in the LLM sense?

– When we read in a document and run it through a vector database to find 
meaning similarities

– Then mark up the document with numeric representations
– Should allow documents to be searched by ‘meaning’ rather than keyword.
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