
Continuous Integration 1 with tests
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Admin
● Assignment from last slide set and new one for now,

– Read chapter 1 in pragmatic programmer

– Listen to “The Programming Podcast” podcast (linked on the class web 
site) episode from Dec 4, 2025 (three links below)

● https://www.youtube.com/watch?v=ap9kVWOs-fk
● https://podcasts.apple.com/us/podcast/the-job-search-crisis-why-3-

3-million-people-are/id1778885184?i=1000739722249
● https://open.spotify.com/episode/5JxdklEjKVqbi1aFsmlH18

– Get me that github ID
– Install your tools as per email

https://www.youtube.com/watch?v=ap9kVWOs-fk
https://podcasts.apple.com/us/podcast/the-job-search-crisis-why-3-3-million-people-are/id1778885184?i=1000739722249
https://podcasts.apple.com/us/podcast/the-job-search-crisis-why-3-3-million-people-are/id1778885184?i=1000739722249
https://open.spotify.com/episode/5JxdklEjKVqbi1aFsmlH18
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Continuous Integration

● What do we mean by continuous integration?
– Lucky volunteer?
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Continuous Integration

● What do we mean by continuous integration?
– Every time we commit code to version control, the entire 

project is built and tested.

– Compare to previous approaches
● Group might work on its piece of the project, maybe  a library, and 

build and test it in isolation except for occasional “gold master” 
style builds

– Now, since automated tests run for every commit/push/pull 
request, 

● you are either fairly confident that the new changes don’t break the 
existing project

● Or find out about the breaks right away.
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Previous CI experience

● Has anyone worked with Continuous Integration before?

– What sorts?
● Jenkins
● TravisCI
● CircleCI
● Azure devOps
● CodeShip
● Bamboo 
● etc
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Continuous Integration

● Today the top two cloud based git servers provide CI services too

– Gitlab has had CI for years
● Solid, powerful experience
● Jetbrains has good integration with gitlab for the last couple of years

– Github introduced github actions about a few years ago
● And made them free for everyone after the Microsoft takeover. 
● We will use github for this class 

– Since the jetbrains integration with github is also really good.
– And it is ‘free’ if you let Microsoft datamine your every behavior

– Remind me about usage here?
●
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Trying out actions

● I’ll use a python example first, 

– but check out what github provides for your language when you press the 
‘actions’ tab the first time

● Lets have a look at my example python “production code”

– And add github actions to run flake8 on that code and automatically run 
the automated tests everytime you push to the branch.

– Then look at some actions yaml syntax.
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Adding Actions

● First click the actions tab
– Before you add an actions 

script, will prompt you to add 
one

● Will bring up a few suggestions 
based on the dominant 
language in your project
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Python

● Your project one will be an 
application, not a library

● For python projects choose 
python application
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Java

● If you are using java – I suggest starting with the maven action

– There are more options for java and I haven’t explored 
them all 
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Github actions scripts

● Github actions scripts are yaml
– Yet another markup language
– (or YAML ain't markup language)

– Yaml uses space-indenting as 
syntactic structure

● Much like python
– Uses dash character ‘-’ to denote the 

beginning of a step
● Rest of step is at same indent 

level or indented more
–

● Github actions need to be in 
your projects main folder in a 
sub-folder called

– .github/workflows/

● You can have more than on 
action script in your project
– Github will check each to see if 

it should be run.
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Synatx Example:Top of default python application action 
● name: Python application

● on:

●   push:

●     branches: [ "master" ]

●   pull_request:

●     branches: [ "master" ]

● permissions:

●   contents: read

● jobs:

●   build:

●     runs-on: ubuntu-latest

●     steps:

●     - uses: actions/checkout@v4

●     - name: Set up Python 3.10

●       uses: actions/setup-python@v3

●       with:

●         python-version: "3.10"

● Give it a unique name
● Next on section

– Defines when this script will be run
– Here for any push or pull request 

on default branch, we will run this 
action

● For now, always go read only
● Next the jobs section

– Can have multiple subsections 
indented

– Build subsection is only one here
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Synatx Example:Top of default python application action 
● name: Python application

● on:

●   push:

●     branches: [ "master" ]

●   pull_request:

●     branches: [ "master" ]

● permissions:

●   contents: read

● jobs:

●   build:

●     runs-on: ubuntu-latest

●     steps:

●     - uses: actions/checkout@v4

●     - name: Set up Python 3.10

●       uses: actions/setup-python@v3

●       with:

●         python-version: "3.10"

● Lets look at build section
– First runs-on

● Select a docker container w/ flavor of Linux

– Steps:
● Can be quite long
● Starts with ‘- uses:’ 

– Specify a prebuilt actions script
– That dash is important

● Next a series of 
– name : <something>

uses: <some other action script>
– Or 
– name: <something>

run: |

   <a series of Linux command line commands>
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Syntax example continued, the rest of the file
●    - name: Install dependencies

●       run: |

●         python -m pip install --upgrade pip

●         pip install flake8 pytest

●         if [ -f requirements.txt ]; then pip install -r requirements.txt; fi

●     - name: Lint with flake8

●       run: |

●         # stop the build if there are Python syntax errors or undefined 
names

●         flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics

●         # exit-zero treats all errors as warnings. The GitHub editor is 127 
chars wide

●         flake8 . --count --exit-zero --max-complexity=10 --max-line-
length=127 --statistics

●     - name: Test with pytest

●       run: |

●         pytest

● Comments
– Yaml uses same ‘#’ comment 

character as python

● If slide messes w/ formatting, all 
lines beginning with dash are at 
same indent.

● Run is one indent further
– And each step in one indent 

under run
– Each step is a command line 

linux command run on docker 
container
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If using the python default

● Once you have the default python action

– Change flake8 to actually fail on format errors
– And maybe change the way pytest is run to deal with tests in different 

folder than production code (python -m pytest)
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Linux for actions

● You might need more linux command line commands for actions
– Of course running programming tools and similar (maven’s mvn command 

etc)
– apt (formerly apt-get) is the ubuntu command line package manager – use it 

to install system packages
– curl is a command line download tool – use it to do something like getting a 

model file from the internet for your actions
– wget is another command line download tool as an alternative to curl
– unzip is the command line unzip program to expand a zip file and extract its 

contents.

● Unknown unknowns to known unknowns
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What is your experience with Automated Tests?

● How many have written them?
●
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What is your experience with Automated Tests?

● How many have written them?
– You are supposed to do them in 

comp152 and comp390

● Lucky volunteer, tell me about 
what they do and what they are 
for
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Automated Tests

● Pretty much every serious software project uses Automated Tests 
today
– Code that evaluates the "production code" and run automatically by the CI 

system
● And should be run the the programmer on their local machine first.
● And github actions (or similar) before code is accepted

– May or may not exercise the entire code base, but does test/exercise at 
least part of it.

● Not everyone believes in TDD
– But yes to automated tests.
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Kinds of Automated Tests

● There are several ways to classify tests
● One Categorization that is used fairly commonly

– Unit tests
– Functional tests
– Acceptance tests

● What are each of these? What do they do?
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Kinds of Automated Tests

● Unit tests
– Item by item – function by function tests
– Officially “tests smallest testable unit”

● Class? Function? Other?

● Functional tests
– Does the app do what it is supposed to do?

● Acceptance tests
– Does the app do what the client thinks it is supposed to do?
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Why?
● So what are the tests supposed to do for us in Test Driven 

Development or other methods of using automated tests?

– Why has Testing (TDD?) become so accepted in the last 10-15 years?
● Going from something more avant-garde that many managers resisted to "table 

stakes" at most software development places?  

– Well actually some people still call it TDD but ‘automated tests’ might be a 
better term

– What does Automated testing buy us? (especially with CI)
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Assignment for new testers

● For those of you new to automated testing
– Read a couple of introductions
– https://katalon.com/resources-center/blog/what-is-automation-testing
– https://medium.com/tenable-techblog/automation-testing-with-pytest-444c8

b34ead2
● And a quick look at doing some of this in pytest (we'll look at some 

examples later)
– https://bas.codes/posts/python-pytest-introduction

● For those of you who have done automation tests before let's move 
on

https://katalon.com/resources-center/blog/what-is-automation-testing
https://medium.com/tenable-techblog/automation-testing-with-pytest-444c8b34ead2
https://medium.com/tenable-techblog/automation-testing-with-pytest-444c8b34ead2
https://bas.codes/posts/python-pytest-introduction
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Unit Tests

● First an easiest tests to understand/automate are Unit Tests
●

● Testing Smallest Testable part of application

– Functions, methods, etc
– Sometimes the entire public interface to a class
– Extend compiler's error checking capability.

● Traditionally each unit test should be done in isolation

– Even if your class relies on a database, mock database and test class
– Recently lots of conference talks pushing back against mocks, tests on each 

unit will include its dependencies
– It seems to be gaining a lot of traction 
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Unit and Automated Test packages

● There are libraries/packages to support automated tests in nearly 
every important language
– Java : JUnit (the granddaddy of all)/Mockito/cucumber
– Python : pytest (and older unittest and nose)
– C++ : Catch 2, google-test, unittest++
– C# : Mstest

– Kotlin: kotlin-test (standard lib)

● Newer language like Go and Rust:
– Tools are built in to the language tooling, no library or framerwork required
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Pytest: the current preferred python test framework

● pip install pytest
– I suggest through pycharm unless you have a linux distro with a package 

manager.
– <file><settings> menu (or <pycharm><preferences> or Mac)
– Then choose the python item from the left list at the top

● And the project interpreter
● Then push the '+' icon to add a package
● From there select pytest and install it. 
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Best Practices
● For best practices,

● Have a separate test directory
● Create a new directory as a subdirectory in your project
● Used by nearly every language (go and rust do it differently)

● Lets call it tests.
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What sorts of tests?

● What sorts of tests should we write?

– Many people suggest at least as much test code as production code
– AI and tests debate
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What sorts of tests?

● What sorts of tests should we write?

– Many people suggest at least as much test code as production code
– again many people suggest at least as much test code as production code
– Want ‘happy path’ tests

● When all data is as expected

– Want bad data tests
● When we enter junk
● c.f little bobby tables

– Especially want to check unusual values
● Like the (in)famous $0 billing statements

– Eventually want to try restricting resources
● Simulate network outage for example. 

https://xkcd.com/327/
https://www.snopes.com/fact-check/zero-dollars-and-zero-sense/
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Let’s try some

● The first/easiest automated tests 

● Test a single function that 
computes a value
– Usual starting demo online
– Let's write a couple of automated 

tests for the simpler functions
– that automated test should find 

‘error’

● Lets take a look at the 
TestingDemo project that I have 
on github

● https://github.com/jsantore/Testin
gDemo
– Recently updated so should be 

near top

https://github.com/jsantore/TestingDemo
https://github.com/jsantore/TestingDemo
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Another Test

● So the first happy path tries some easy wins

– 3,4,5 triangle
– Then we add in floating point answers
– But floating point has precision and rounding issues for repeating decimals 

and irrational decimals
● you’ve heard this since CS1

– Now we run into it with these tests
– For floating point numbers in pytest use 

● Pytest.approx(<expected number>, <acceptable tolerance>)
● Eg

– assert pretendProductionCode.simple_distance(0, 0, 6, 5) == 
pytest.approx(7.81024967590, .000001)
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Junit has one too

● JUnit provides an equivalent 

● public static void 
assertEquals(double expected,

●                                double actual,
●                                 double delta)

– Version without delta is deprecated 

● Example:

– double myPi = 22.0d / 7.0d; //Don't 
use this in real life!

– assertEquals(3.14159, myPi, 
0.001);

● From:
https://stackoverflow.com/questio
ns/5939788/junit-assertequalsdou
ble-expected-double-actual-doubl
e-epsilon

●

https://stackoverflow.com/questions/5939788/junit-assertequalsdouble-expected-double-actual-double-epsilon
https://stackoverflow.com/questions/5939788/junit-assertequalsdouble-expected-double-actual-double-epsilon
https://stackoverflow.com/questions/5939788/junit-assertequalsdouble-expected-double-actual-double-epsilon
https://stackoverflow.com/questions/5939788/junit-assertequalsdouble-expected-double-actual-double-epsilon
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The save function

● Let's try to test the output function
● Let's look at the two options
● And then test the one that can be 

tested.
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The Podcast

● Now lets talk about ‘The Programming Podcast” episode:
– The Job Search Crisis: Why 3.3 Million People Are Failing (And 

How To Fix It)
–
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