
Continuous Integration 1 with tests

 2

Admin
● Assignment from last slide set and new one for now,

– Read chapter 1 in pragmatic programmer

– Listen to “The Programming Podcast” podcast (linked on the class web
site) episode from Dec 4, 2025 (three links below)

● https://www.youtube.com/watch?v=ap9kVWOs-fk
● https://podcasts.apple.com/us/podcast/the-job-search-crisis-why-3-

3-million-people-are/id1778885184?i=1000739722249
● https://open.spotify.com/episode/5JxdklEjKVqbi1aFsmlH18

– Get me that github ID
– Install your tools as per email

https://www.youtube.com/watch?v=ap9kVWOs-fk
https://podcasts.apple.com/us/podcast/the-job-search-crisis-why-3-3-million-people-are/id1778885184?i=1000739722249
https://podcasts.apple.com/us/podcast/the-job-search-crisis-why-3-3-million-people-are/id1778885184?i=1000739722249
https://open.spotify.com/episode/5JxdklEjKVqbi1aFsmlH18

 3

Continuous Integration

● What do we mean by continuous integration?
– Lucky volunteer?

 4

Continuous Integration

● What do we mean by continuous integration?
– Every time we commit code to version control, the entire

project is built and tested.

– Compare to previous approaches
● Group might work on its piece of the project, maybe a library, and

build and test it in isolation except for occasional “gold master”
style builds

– Now, since automated tests run for every commit/push/pull
request,

● you are either fairly confident that the new changes don’t break the
existing project

● Or find out about the breaks right away.

 5

Previous CI experience

● Has anyone worked with Continuous Integration before?

– What sorts?
● Jenkins
● TravisCI
● CircleCI
● Azure devOps
● CodeShip
● Bamboo
● etc

 6

Continuous Integration

● Today the top two cloud based git servers provide CI services too

– Gitlab has had CI for years
● Solid, powerful experience
● Jetbrains has good integration with gitlab for the last couple of years

– Github introduced github actions about a few years ago
● And made them free for everyone after the Microsoft takeover.
● We will use github for this class

– Since the jetbrains integration with github is also really good.
– And it is ‘free’ if you let Microsoft datamine your every behavior

– Remind me about usage here?
●

 7

Trying out actions

● I’ll use a python example first,

– but check out what github provides for your language when you press the
‘actions’ tab the first time

● Lets have a look at my example python “production code”

– And add github actions to run flake8 on that code and automatically run
the automated tests everytime you push to the branch.

– Then look at some actions yaml syntax.

 8

Adding Actions

● First click the actions tab
– Before you add an actions

script, will prompt you to add
one

● Will bring up a few suggestions
based on the dominant
language in your project

 9

Python

● Your project one will be an
application, not a library

● For python projects choose
python application

 10

Java

● If you are using java – I suggest starting with the maven action

– There are more options for java and I haven’t explored
them all

 11

Github actions scripts

● Github actions scripts are yaml
– Yet another markup language
– (or YAML ain't markup language)

– Yaml uses space-indenting as
syntactic structure

● Much like python
– Uses dash character ‘-’ to denote the

beginning of a step
● Rest of step is at same indent

level or indented more
–

● Github actions need to be in
your projects main folder in a
sub-folder called

– .github/workflows/

● You can have more than on
action script in your project
– Github will check each to see if

it should be run.

 12

Synatx Example:Top of default python application action
● name: Python application

● on:

● push:

● branches: ["master"]

● pull_request:

● branches: ["master"]

● permissions:

● contents: read

● jobs:

● build:

● runs-on: ubuntu-latest

● steps:

● - uses: actions/checkout@v4

● - name: Set up Python 3.10

● uses: actions/setup-python@v3

● with:

● python-version: "3.10"

● Give it a unique name
● Next on section

– Defines when this script will be run
– Here for any push or pull request

on default branch, we will run this
action

● For now, always go read only
● Next the jobs section

– Can have multiple subsections
indented

– Build subsection is only one here

 13

Synatx Example:Top of default python application action
● name: Python application

● on:

● push:

● branches: ["master"]

● pull_request:

● branches: ["master"]

● permissions:

● contents: read

● jobs:

● build:

● runs-on: ubuntu-latest

● steps:

● - uses: actions/checkout@v4

● - name: Set up Python 3.10

● uses: actions/setup-python@v3

● with:

● python-version: "3.10"

● Lets look at build section
– First runs-on

● Select a docker container w/ flavor of Linux

– Steps:
● Can be quite long
● Starts with ‘- uses:’

– Specify a prebuilt actions script
– That dash is important

● Next a series of
– name : <something>

uses: <some other action script>
– Or
– name: <something>

run: |

 <a series of Linux command line commands>

 14

Syntax example continued, the rest of the file
● - name: Install dependencies

● run: |

● python -m pip install --upgrade pip

● pip install flake8 pytest

● if [-f requirements.txt]; then pip install -r requirements.txt; fi

● - name: Lint with flake8

● run: |

● # stop the build if there are Python syntax errors or undefined
names

● flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics

● # exit-zero treats all errors as warnings. The GitHub editor is 127
chars wide

● flake8 . --count --exit-zero --max-complexity=10 --max-line-
length=127 --statistics

● - name: Test with pytest

● run: |

● pytest

● Comments
– Yaml uses same ‘#’ comment

character as python

● If slide messes w/ formatting, all
lines beginning with dash are at
same indent.

● Run is one indent further
– And each step in one indent

under run
– Each step is a command line

linux command run on docker
container

 15

If using the python default

● Once you have the default python action

– Change flake8 to actually fail on format errors
– And maybe change the way pytest is run to deal with tests in different

folder than production code (python -m pytest)

 16

Linux for actions

● You might need more linux command line commands for actions
– Of course running programming tools and similar (maven’s mvn command

etc)
– apt (formerly apt-get) is the ubuntu command line package manager – use it

to install system packages
– curl is a command line download tool – use it to do something like getting a

model file from the internet for your actions
– wget is another command line download tool as an alternative to curl
– unzip is the command line unzip program to expand a zip file and extract its

contents.

● Unknown unknowns to known unknowns

 17

What is your experience with Automated Tests?

● How many have written them?
●

 18

What is your experience with Automated Tests?

● How many have written them?
– You are supposed to do them in

comp152 and comp390

● Lucky volunteer, tell me about
what they do and what they are
for

 19

Automated Tests

● Pretty much every serious software project uses Automated Tests
today
– Code that evaluates the "production code" and run automatically by the CI

system
● And should be run the the programmer on their local machine first.
● And github actions (or similar) before code is accepted

– May or may not exercise the entire code base, but does test/exercise at
least part of it.

● Not everyone believes in TDD
– But yes to automated tests.

 20

Kinds of Automated Tests

● There are several ways to classify tests
● One Categorization that is used fairly commonly

– Unit tests
– Functional tests
– Acceptance tests

● What are each of these? What do they do?

 21

Kinds of Automated Tests

● Unit tests
– Item by item – function by function tests
– Officially “tests smallest testable unit”

● Class? Function? Other?

● Functional tests
– Does the app do what it is supposed to do?

● Acceptance tests
– Does the app do what the client thinks it is supposed to do?

 22

Why?
● So what are the tests supposed to do for us in Test Driven

Development or other methods of using automated tests?

– Why has Testing (TDD?) become so accepted in the last 10-15 years?
● Going from something more avant-garde that many managers resisted to "table

stakes" at most software development places?

– Well actually some people still call it TDD but ‘automated tests’ might be a
better term

– What does Automated testing buy us? (especially with CI)

 23

Assignment for new testers

● For those of you new to automated testing
– Read a couple of introductions
– https://katalon.com/resources-center/blog/what-is-automation-testing
– https://medium.com/tenable-techblog/automation-testing-with-pytest-444c8

b34ead2
● And a quick look at doing some of this in pytest (we'll look at some

examples later)
– https://bas.codes/posts/python-pytest-introduction

● For those of you who have done automation tests before let's move
on

https://katalon.com/resources-center/blog/what-is-automation-testing
https://medium.com/tenable-techblog/automation-testing-with-pytest-444c8b34ead2
https://medium.com/tenable-techblog/automation-testing-with-pytest-444c8b34ead2
https://bas.codes/posts/python-pytest-introduction

 24

Unit Tests

● First an easiest tests to understand/automate are Unit Tests
●

● Testing Smallest Testable part of application

– Functions, methods, etc
– Sometimes the entire public interface to a class
– Extend compiler's error checking capability.

● Traditionally each unit test should be done in isolation

– Even if your class relies on a database, mock database and test class
– Recently lots of conference talks pushing back against mocks, tests on each

unit will include its dependencies
– It seems to be gaining a lot of traction

 25

Unit and Automated Test packages

● There are libraries/packages to support automated tests in nearly
every important language
– Java : JUnit (the granddaddy of all)/Mockito/cucumber
– Python : pytest (and older unittest and nose)
– C++ : Catch 2, google-test, unittest++
– C# : Mstest

– Kotlin: kotlin-test (standard lib)

● Newer language like Go and Rust:
– Tools are built in to the language tooling, no library or framerwork required

 26

Pytest: the current preferred python test framework

● pip install pytest
– I suggest through pycharm unless you have a linux distro with a package

manager.
– <file><settings> menu (or <pycharm><preferences> or Mac)
– Then choose the python item from the left list at the top

● And the project interpreter
● Then push the '+' icon to add a package
● From there select pytest and install it.

 27

Best Practices
● For best practices,

● Have a separate test directory
● Create a new directory as a subdirectory in your project
● Used by nearly every language (go and rust do it differently)

● Lets call it tests.

 28

What sorts of tests?

● What sorts of tests should we write?

– Many people suggest at least as much test code as production code
– AI and tests debate

 29

What sorts of tests?

● What sorts of tests should we write?

– Many people suggest at least as much test code as production code
– again many people suggest at least as much test code as production code
– Want ‘happy path’ tests

● When all data is as expected

– Want bad data tests
● When we enter junk
● c.f little bobby tables

– Especially want to check unusual values
● Like the (in)famous $0 billing statements

– Eventually want to try restricting resources
● Simulate network outage for example.

https://xkcd.com/327/
https://www.snopes.com/fact-check/zero-dollars-and-zero-sense/

 30

Let’s try some

● The first/easiest automated tests

● Test a single function that
computes a value
– Usual starting demo online
– Let's write a couple of automated

tests for the simpler functions
– that automated test should find

‘error’

● Lets take a look at the
TestingDemo project that I have
on github

● https://github.com/jsantore/Testin
gDemo
– Recently updated so should be

near top

https://github.com/jsantore/TestingDemo
https://github.com/jsantore/TestingDemo

 31

Another Test

● So the first happy path tries some easy wins

– 3,4,5 triangle
– Then we add in floating point answers
– But floating point has precision and rounding issues for repeating decimals

and irrational decimals
● you’ve heard this since CS1

– Now we run into it with these tests
– For floating point numbers in pytest use

● Pytest.approx(<expected number>, <acceptable tolerance>)
● Eg

– assert pretendProductionCode.simple_distance(0, 0, 6, 5) ==
pytest.approx(7.81024967590, .000001)

 32

Junit has one too

● JUnit provides an equivalent

● public static void
assertEquals(double expected,

● double actual,
● double delta)

– Version without delta is deprecated

● Example:

– double myPi = 22.0d / 7.0d; //Don't
use this in real life!

– assertEquals(3.14159, myPi,
0.001);

● From:
https://stackoverflow.com/questio
ns/5939788/junit-assertequalsdou
ble-expected-double-actual-doubl
e-epsilon

●

https://stackoverflow.com/questions/5939788/junit-assertequalsdouble-expected-double-actual-double-epsilon
https://stackoverflow.com/questions/5939788/junit-assertequalsdouble-expected-double-actual-double-epsilon
https://stackoverflow.com/questions/5939788/junit-assertequalsdouble-expected-double-actual-double-epsilon
https://stackoverflow.com/questions/5939788/junit-assertequalsdouble-expected-double-actual-double-epsilon

 33

The save function

● Let's try to test the output function
● Let's look at the two options
● And then test the one that can be

tested.

 34

The Podcast

● Now lets talk about ‘The Programming Podcast” episode:
– The Job Search Crisis: Why 3.3 Million People Are Failing (And

How To Fix It)
–

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

